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Experimental design
Independent versus matched design



Experimental design
Independent design

• 2 or more groups in an experiment with independent subjects

• Example: 3 groups with n=4 in the control group and n=4 in each treated group

Control Treatment 2Treatment 1

One experiment

4 different mice 4 different mice 4 different mice



Experimental design
Matched design

• Also called repeated = dependent = paired (2 groups)

• Design 1: ≥2 measures per animal/subject/petri dish

Example 1: before/after treatment measures Example 2: 3 time points

Paired/Matched values
Difference or ratio possible

for each mouse

Matched/Repeated values
Ex: Difference or ratio vs. Time 1

for each mouse

Mouse 1

Mouse 2

Mouse 3

Same mouse

Time 1 Time 2 Time 3
Before After

Mouse 1

Mouse 2

Mouse 3

Same mouse



Experimental design
Matched design

• Design 2: experiment repeated independently

Example 1: 3 independent experiments
2 mice within each: WT and KO

Example 2: 3 independent experiments
3 mice within each: control and 2 treatments

Matched/Paired values
Each KO mouse is matched with a WT

Difference or ratio possible
for each experiment

Matched values
Ex: Difference or ratio vs. Time 1

for each experiment

WT KO

Experiment 1

2 different mice

Experiment 2

Experiment 3

3 different 
mice

Ctrl Treat 1 Treat 2

Experiment 2

Experiment 3

Experiment 1



• Simple randomisation or randomisation within blocks
• Example nuisance variables for blocking:

• Time or day of experiment
• Litter, cage, etc.
• Person carrying out experiment
• Sex, age, body weight, etc.
• Another related measure (e.g. starting cell numbers, level of 

cytokine, or similar)
• Use random number generator, flip a coin, roll a dice

Blinding should be thought about:
• When allocating groups
• When doing the experiment

Experimental design
Other design considerations: bias

The ARRIVE guidelines 2.0
1. Study design
2. Sample size
3. Inclusion and exclusion criteria
4. Randomisation
5. Blinding/Masking
6. Outcome measures
7. Statistical methods
8. Experimental animals
9. Results

The lack of bias-reducing measures such as randomisation and 
blinding can contribute to as much as 30-45% inflation of effect 

sizes

https://arriveguidelines.org/arrive-guidelines 

• When measuring outcomes
• When doing the analysis

https://arriveguidelines.org/arrive-guidelines
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Technical/biological replicates
Not always easy



• Technical: repeated measures of the same sample → variability in the protocol

• Biological: measures of biologically distinct samples → biological variation

• Average of technical replicates = 1 biological replicate → ↓measurement error

Technical

n=1

Biological

n=3

Technical versus biological replicates

Technical & Biological
n=3



• Definition of technical and biological depends on the model

• Mouse, human, plant, or other complex organism

• One value per individual organism = biological replicate

Technical

n=1

Biological

n=3

Technical versus biological replicates
Not always easy to tell the difference



• The model: mouse or other complex organism
• >1 value per individual, e.g. axon degeneration

• What to do? Not one good answer
• In this case: mouse = experiment unit, nerve segments = biological replicates, axons = 

technical replicates
• But how generalisable to a wider population is this?

… …

One measure or more    

Tens of values 
(per mouse)

Several axons 
per segment

Several segments 
per mouse

One mouse

Technical versus biological replicates
Not always easy to tell the difference



• Cells, worms, etc. = many ‘individuals’:
• What is ‘n’ in cell culture experiments?

Vial of frozen cells Dishes, flasks, wells, …
Cells in culture

Point of Treatment

Control Treatment

Glass slides, microarrays,
lanes in gel, wells in plate,

…
Point of Measurements

Technical versus biological replicates
Not always easy to tell the difference



• Design 1:

One value per glass slide
e.g. cell count

• After quantification: 6 values
• Sample size: n = 1

• no independence between slides
• variability = pipetting/measurement error

Technical versus biological replicates
Not always easy to tell the difference



• Design 2:

• After quantification: 6 values
• Sample size: n = 1

• no independence between plates
• variability = bit better as sample split higher up in the hierarchy

Everything processed
 on the same day

Technical versus biological replicates
Not always easy to tell the difference



• Design 3: Often, as good as it can get

• After quantification: 6 values
• Sample size: n = 3

• Whole procedure repeated 3 separate times
• 3 days are (mostly) independent

• Technical variability but at the highest hierarchical level
• 2 glass slides = paired observations

Day 1 Day 2 Day 3

Technical versus biological replicates
Not always easy to tell the difference



• After quantification: 6 values
• Sample size: n = 3

• Real biological replicates

• Design 4: The ideal design

person/animal/
plant 1

person/animal/
plant 2

person/animal/
plant 3

Technical versus biological replicates
Not always easy to tell the difference



• Identify technical and biological replicates

• Make the replicates as independent as possible

• Consider wider factors, e.g. rarity of samples, 
cost and accuracy of measurements

• Never mix technical and biological replicates

• Do not generalise your results beyond what you 
are able to show

• How ‘good’ your biological replicates are 
determines how generalisable your results are 

o ↑ confidence if true biological replicates

o ↓ confidence if single cell line 

Technical versus biological replicates
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Technical vs. Biological



Experimental Design
Statistical analysis

• Think about the statistical analyses before you collect any data
• Translate the hypothesis into statistical questions

What data will I collect?

How will it be 
recorded/produced?

Will I have access to the raw data?

I have been told to do this 
test/use that template, is that 
right?

Do I know enough stats to 
analyse my data? If not: ask for help!



Experimental Design
Statistical analysis



• Purpose of EDA = discovery

• Less confidence in results so follow up with confirmatory tests

• Confirmatory approaches (hypothesis testing) provide stronger statistical evidence

• EDA ≠ “p-hacking” but could be if reported as if confirmatory

• Be clear about approach taken – harm comes from misrepresenting processes

Experimental Design
Exploratory data analysis (EDA)
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Statistical Analysis

Type of DesignCommon Sense

Technical vs. Biological



Experimental Design
Common sense

• Design your experiment to be analysable

• Imagine how your results will look

• Imagine what could go wrong at each step

• Accept limitations and account for them (be 
prepared for follow up experiments, if 
required)

• The gathering of results or carrying out of a 
procedure is not the end goal

• Don’t get fixated on being able to perform a 
cool technique or experimental protocol

• Don’t overcomplicate

• Don’t get overwhelmed (ask for help)

Will these results address your hypothesis?
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• Power analysis is about estimating the appropriate sample size.

Power analysis

Power Analysis



Sample size

• Too big: waste of resources

• Too small: may miss the effect (p>0.05) + waste of resources

• Grants: justification of sample size

• Publications: reviewers ask for power calculation evidence

• Home office (UK): the 3 Rs: Replacement, Reduction and Refinement

•  To estimate an appropriate sample size, we need to do a power analysis



Statistical power

• In a nutshell: the bigger the experiment (bigger sample size), the bigger the 

power (more likely to pick up a difference) 

• Power = probability of detecting an effect, given that the effect is really there

• = the probability that a statistical test will reject a false null hypothesis (H0)

• To really understand power, we first need to understand some statistical 

concepts…



• The null hypothesis: H0 = no effect 

• The aim of a statistical test is to reject or not H0.

Statistical decision True state of H0

H0 True (no effect) H0 False (effect)

Reject H0 Type I error α

False Positive

Correct

True Positive

Do not reject H0 Correct

True Negative

Type II error β

False Negative

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork

Hypothesis testing

Properly 
powered studies 
minimise this

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork


What does Power look like?



• Probability that the observed result occurs if H0 is true
• H0 : Null hypothesis = absence of effect
• H1: Alternative hypothesis = presence of an effect

• Statistics is all about rejecting the Null or not.

What does Power look like? Null and alternative hypotheses

Control Treatment



• Type I error is the failure to reject a true H0  
• Claiming an effect which is not there.
• α : probability of making a Type I error

• α : the significance level, usually set at 0.05 or 5%

What does Power look like? Type I error (α) 



• p-value: probability that the observed statistic 
occurred by chance alone
• probability that a difference as big as the 

one observed could be found even if there 
is no effect.

What does Power look like? Type I error (α) and the p-value 

• Statistical significance: comparison between α 
(=0.05) and the p-value
• p-value < 0.05: there is a significant 

difference ☺ (reject H0) 
• p-value > 0.05: there is no significant 

difference  (fail to reject H0)



• Type II error (β) is the failure to reject a false 
H0 
• Missing an effect which is really there
• β : probability of making a Type II error

What does Power look like? Type II error (β) and Power

• Power: Probability of detecting an effect which is 
really there.

=  Probability of rejecting a false H0

• Direct relationship between Power and Type 
II error: Power = 1 – β

Area = 1
Power = 1 – β



• General convention: 80% but could be more

• Means a true difference will be missed 20% of the time

• If power = 0.8 then β = 1- power = 0.2 (20%)

• Jacob Cohen (1962): 

• Type I errors are 4x more serious than Type II errors: 

• 0.05 * 4 = 0.2

• Compromise between power and sample size, e.g. for 2 

group comparisons:

• 90% power = +30% sample size 

• 95% power = +60% sample size

What does Power look like? Power = 80%
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Small difference Big difference

Critical value

Not significant: p>0.05 Significant: p<0.05

Critical value = size of difference + sample size + significance level 

The critical value



• In hypothesis testing: 
• critical value is compared to the test 

statistic to determine significance
• Example of test statistic: t-value

Example: 2-tailed t-test with n=15 (df=14)

T Distribution

0.95
0.025 0.025

t=-2.1448 t=2.1448

0

The critical value: size of difference + sample size + significance
Example with the t-test 

~ Difference

Difference “too small”

Diff “big enough”

Significance level

D
eg

re
es

 o
f 

fr
ee

d
o

m

• If test statistic > critical value: statistical 
significance and rejection of the null 
hypothesis
• Example: t-value > critical t-value



• The null hypothesis: H0 = no effect 

• The aim of a statistical test is to reject or not H0.

Statistical decision True state of H0

H0 True (no effect) H0 False (effect)

Reject H0 Type I error α

False Positive

Correct

True Positive

Do not reject H0 Correct

True Negative

Type II error β

False Negative

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork

To recap:

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork


The power analysis depends on the relationship between 6 variables:

• the significance level (5%)

• the desired power of the experiment (80%)

• the alternative hypothesis (i.e. one or two-sided test)

• the difference of biological interest

• the variability in the data (standard deviation)

•the sample size

Effect size

Power analysis



The power analysis depends on the relationship between 6 variables:

• the significance level (5%)

• the desired power of the experiment (80%)

• the alternative hypothesis (i.e. one or two-sided test)

• the difference of biological interest

• the variability in the data (standard deviation)

•the sample size

Effect size

Power analysis



The alternative hypothesis: what is it?

• One-tailed or two-tailed test? One-sided or two-sided tests?

• Is the question:
• Is the there a difference? → Two-tailed
• Is it larger than or smaller than? → One-tailed

• Can rarely justify the use of a one-tailed test
• Two times easier to reach significance with one-tailed than two-tailed → suspicious 

reviewer!



The power analysis depends on the relationship between 6 variables:

• the significance level (5%)

• the desired power of the experiment (80%)

• the alternative hypothesis (i.e. one or two-sided test)

• the difference of biological interest

• the variability in the data (standard deviation)

•the sample size

Effect size

Power analysis



The difference of biological interest

• Determined scientifically (not statistically)

• Minimum meaningful effect of biological relevance 
(Minimum Effect of Interest, MEI)

• How to determine it?
• Previous research, pilot study

The variability
• We need to have an idea of the standard deviation before we 
start the experiment

• How to determine it?
• Data from previous research on WT, control or baseline

Effect size
Combination of 
absolute effect and 
variability 



• Depends on the type of difference and the data
• Easy example: comparison between 2 means

• Jacob Cohen defined small, medium and large effects for different tests – 
but not recommended

Absolute difference

The effect size: how is it calculated?

Variability



• The bigger the effect (the absolute difference), the bigger the power
= the bigger the probability of picking up the difference

http://rpsychologist.com/d3/cohend/

Absolute difference

The effect size: how is it calculated?
The absolute difference

http://rpsychologist.com/d3/cohend/


• The bigger the variability of the data, the smaller the power

H0 H1

critical value

The effect size: how is it calculated?
The standard deviation

Variability



The power analysis depends on the relationship between 6 variables:

• the significance level (5%)

• the desired power of the experiment (80%)

• the alternative hypothesis (i.e. one or two-sided test)

• the difference of biological interest

• the variability in the data (standard deviation)

•the sample size

Effect size

Power analysis



The sample size

• Most of the time, the output of a power calculation

• In reality it is difficult to reduce the variability in data, or the contrast 
between means
• most effective way of improving power:

• increase the sample size

• The bigger the sample, the bigger the power
• but how does it actually work?



• We want to know about whole population

• All people, all patients, all mice, all cells…

• Not possible to measure whole population

• So take a representative sample

• Make inferences about the population

• Larger samples more likely to be representative of 
the population

Samples and population



‘Infinite’ number of experiments

Samples means = ത𝐱 
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Population

Sample

Sample

n=3

n=30

The sample size

Example with 10 
experiments

Usually only do one 
experiment
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Control

Treatment

The sample size



The sample size: the bigger the better?

• What if the tiny difference is meaningless?
• Beware of overpower
• Nothing wrong with the stats: it is all about 

interpretation of the results of the test

• Remember the important first step of power analysis:
• What is the effect size of biological interest?

• It takes huge samples to detect tiny differences but tiny samples to detect huge differences



What sample size do I need to have a 80% probability (power) to detect this particular effect 
(difference and standard deviation) at a 5% significance level using a 2-sided test?

Power analysis
Typical question



• Fix any five of the variables, a mathematical relationship is used to estimate the sixth

Difference of biological interest

+ Variability in the data (standard deviation)

+ Desired power of the experiment (80%)

+ Significance level (5%)

+ Alternative hypothesis (i.e. one or two-sided test)

Appropriate sample size

Power analysis



• Good news: 
there are packages that can do the power analysis 
for you, providing you have some prior knowledge 
of the key parameters!

• R

• G*Power

Power analysis

power.prop.test(n=NULL, p1=NULL, p2=NULL, 

 sig.level=NULL, power=NULL, 

 alternative=c("two.sided", "one.sided"))

power.t.test(n=NULL, delta=NULL, sd=1, sig.level=NULL,

 power=NULL, 

 type=c("two.sample", "one.sample", "paired"),

 alternative=c("two.sided", "one.sided"))

Use R Help to find out how to use the 
functions

• e.g. ?power.prop.test in 
the console



Exercise:
• Scientists have come up with a solution that may reduce the number of lions being shot by farmers in Africa: 

• Painting eyes on cows’ bottoms.
• Early trials suggest that lions are less likely to attack livestock when they think they’re being watched 

• Fewer livestock attacks could help farmers and lions co-exist more peacefully.

• Pilot study over 6 weeks:  
• 3 out of 39 unpainted cows were killed by lions, none of the 23 painted cows from the same herd were 

killed.

http://www.sciencealert.com/scientists-are-painting-
eyes-on-cows-butts-to-stop-lions-getting-shot

Power Analysis
Comparing 2 proportions (Fisher’s exact test)

• Tasks:

• Do you think the observed effect is meaningful to the extent 
that such a ‘treatment’ should be applied? 

 Consider ethics, economics, conservation …
• Run a power calculation to find out how many cows should be 

included in the study.
• Clue 1:  power.prop.test()
• Clue 2: exactly one of the parameters must be passed as 

NULL, and that parameter is determined by the others

http://www.sciencealert.com/scientists-are-painting-eyes-on-cows-butts-to-stop-lions-getting-shot
http://www.sciencealert.com/scientists-are-painting-eyes-on-cows-butts-to-stop-lions-getting-shot


Exercise 1: Answer

• Pilot study over 6 weeks:  
• 3 out of 39 unpainted cows were killed by lions, none of the 23 painted cows from the same herd were killed.

power.prop.test(n=NULL, 

     p1=3/39, 

     p2=0, 

     sig.level=0.05, 

     power=0.8, 

     alternative="two.sided")

Providing the preliminary results are to be trusted, to be able to pick up such a difference 
between the 2 groups, with a power of 80% and a significance level of 5%, we will need at 
least 97 cows in each group.

Power Analysis
Comparing 2 proportions



https://www.nature.com/articles/s42003-020-01156-0.pdf



Exercise:
• We want to know whether male and female coyotes differ in size

• No data from a pilot study but we have found some information in the literature:
• In a study run in similar conditions as in the one we intend to run, male coyotes were 

found to measure: 92cm +/- 7cm (SD)
• We expect a 5% difference between sexes
 = smallest biologically meaningful difference

Power Analysis
Comparing 2 means (t-test)

• Task:
• Run a power calculation to find out how many 

coyotes should be included in the study
• Using power.t.test()



power.t.test(

   n = NULL, delta = NULL, sd = NULL, 

   sig.level = NULL, power = NULL, 

   type = "two.sample" or "one.sample" 

 or "paired",

   alternative = "two.sided" or  

 "one.sided")

Power Analysis
Comparing 2 means (t-test)

Independent t-test

A priori Power analysis

Example case:

From a similar study, male coyotes were 
found to measure:
92cm+/- 7cm (SD)

You expect a 5% difference between sexes 
with similar variability in the female 
sample

power.t.test(delta = 92-87.4, sd = 7,

 sig.level = 0.05, power = 0.8)

You need a sample size of n=76 (2*38)



Unequal sample sizes

• No simple trade-off – if need 2 groups of 30 → 20 and 40 = decreased power
• Unbalanced design = bigger total sample

• Solution 1 (old school): 

 Step 1: power calculation for equal sample size
 Step 2: adjustment

Cow example: 
• Balanced design: n = 97
• If unpainted group is 2 times bigger than painted (k=0.5):

𝑁 =
2 × 97 × (1 + 0.5)2

4 × 0.5
= 218.25 ≈ 219

Unpainted butts (n1)=146 Painted butts (n2)=73

• Balanced design: n = 2*97 = 194
• Unbalanced design: n= 73+146 = 219

Where:
• N = total sample 

size in unbalanced 
design

• n = total sample 
size in balanced 
design

• n1 = group 1 size
• n2 = group 2 size
• k = ratio n2/n1



Unequal sample sizes

• Solution 2: Use R

• In practice with R, # MESS package #

• Comparing 2 proportions with unequal n: 
power_prop_test()

• Comparing 2 means with unequal n: 
power_t_test()

power_prop_test(n=NULL, 

 p1=3/39, p2=0, sig.level=0.05, 

power =0.8, ratio = 0.5)

Different methods give slightly 
different sample sizes:
• Using adjustment

• Unpainted (n1) = 146 
• Painted (n2) = 73 
• Total sample = 219

• Using R:
• Unpainted (n1) = 161
• Painted (n2) = 81
• Total sample = 242

Also consider anything else that 
might impact final numbers, e.g. if 
likely to lose some samples during 

experiment



Non-parametric tests

• Do not assume data come from a Gaussian/normal distribution

• Based on ranking values from low to high
• Almost always less powerful

• Proper power calculations need to specify which kind of distribution we are 
dealing with – not easy

• Non-parametric usually do not require more than 15% additional subjects 
compared to parametric

• Crude rule of thumb:
• Compute sample size required for a parametric test and add 15%



• Misinterpretation of the results

• Never ever interpret p-values without context!

• Significant p-value (<0.05): but what is the difference?
• >= smallest meaningful difference: exciting effect
• < smallest meaningful difference: essentially a false positive/type 1 error

• Too big sample, overpowered – difference has no biological relevance

• Not significant p-value (>0.05): but how big was the sample?
• Big enough = enough power: no effect
• Not big enough = underpowered: potentially a false negative/type 2 error

• Too small sample – potentially miss a meaningful difference

What happens if we ignore the power of a test?



Exercise 1
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Variable

Quantitative

Continuous Discrete

Qualitative

Nominal Ordinal Binary

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork


Variable

Quantitative

Continuous Discrete

Qualitative

Nominal Ordinal Binary

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork


Quantitative data

• They take numerical values (units of measurement)

• Discrete: obtained by counting
• Example: number of students in a class

• values vary by finite specific steps

• Continuous: obtained by measuring
• Example: height of students in a class

• any values – can have decimal places

• They can be described by a series of parameters:

• Mean, variance, standard deviation, standard error and confidence interval

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork


Measures of central tendency
Mode and Median

• Mode: most commonly occurring value in a distribution

• Median: value exactly in the middle of an ordered set of numbers



• Definition: average of all values in a column

• Example: mean of: 1, 2, 3, 3 and 4 = (1+2+3+3+4)/5 = 2.6

• The mean is a model because it summaries the data

• How do we know that it is an accurate model?

• Difference between the real data and the model created

Measures of central tendency
Mean
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• Calculate the magnitude of the differences 
between each data and the mean

• Total error = sum of differences
          = Σ(𝑥𝑖 − 𝑥) = -1.6 - 0.6 + 0.4 + 0.4 + 1.4 = 0

 No errors: positive and negative cancel each other out

• To solve that problem we square the errors 

 → Sum of squared errors (SS)

Measures of dispersion
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Sum of Squared errors (SS)

• Sum of squared errors = 𝑆𝑆 = 𝛴 𝑥𝑖 − 𝑥 2

  = (-1.6) 2 + (-0.6)2 + (0.4)2 +(0.4)2 + (1.4)2

  = 5.20

• Good measure of the accuracy of the model

• Depends on amount of data: larger sample → larger SS

• Account for number of observations (N) by dividing SS by N-1 
(degrees of freedom)

 → the variance (S2) = SS/N-1

0

1

2

3

4

5

C
o

n
ti

n
u

o
u

s
 v

a
ri

a
b

le

+1.4

+0.4+0.4

-0.6

-1.6



Degrees of freedom

• To calculate the variance, we need the mean

• If we know the mean, we do not need all the values in the sample to 
calculate the variance

• Example: Sample: n = 5, Mean ( ҧ𝑥) = 2.6
• 2.6 x 5 – (1+2+3+3) = 4

• Once we know the mean, we only need to know the first 4 numbers (N-1) 
and we can calculate the last number

1+2+3+3 +4

5
=2.6

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑠2 =
𝑆𝑆

𝑁 − 1
=

Σ 𝑥𝑖 − 𝑥 2

𝑁 − 1



• The last (nth) value in the sample is no longer independent, is not free.

• Because we know the mean, the variance does not depend on all of the 
values of the sample, only on n-1 of the values

Degrees of freedom

n – 1 degrees of freedom

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑠2 =
𝑆𝑆

𝑁 − 1
=

Σ 𝑥𝑖 − 𝑥 2

𝑁 − 1



Variance and standard deviation

• 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑠2 =
𝑆𝑆

𝑁−1
=

Σ 𝑥𝑖− 𝑥 2

𝑁−1
=

5.20

4
= 1.3

• Problem with variance: in squared units

• Take the square root to get the same unit as the original measure

 → the standard deviation

 S.D. = √(SS/N-1) = √(s2) = s = 1.3 = 1.14

• SD = a measure of how well the mean represents the data. 
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Standard deviation

Small S.D. 
data close to the mean: 

good fit of the data

Large S.D. 
data distant from the mean: 

not an accurate representation
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Standard Deviation (SD) or Standard Error Mean (SEM)?  
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Standard Deviation

• The SD quantifies how much the values vary from one another

→ scatter or spread 

• Does not change predictably as you acquire more data
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Standard Error of the Mean  

SEM =
SD

𝑁
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• The SEM quantifies how accurately we 
know the true mean of the population

• Takes into account: SD + sample size

• Make inferences about the population

• The SEM gets smaller as the sample gets 
larger 

• Mean of a large sample likely closer to 
true mean than mean of a small sample 



Theoretical ‘infinite’ number of 
experiments

Samples means = ത𝐱 

The SEM and the sample size
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SD or SEM ?

• If we want to show the variation among values: 

→ Report the SD

• If we want to show how precisely we have 
determined the population mean:

→ Report the SEM

• Preferably show all data points and the SEM

→ Both variation and precision

M
e
a
n

 +
 S

E
M

https://lymielynn.medium.com/a-little-closer-to-cooks-distance-e8cc923a3250

Whichever you choose 
make sure to report it 

accurately!

https://lymielynn.medium.com/a-little-closer-to-cooks-distance-e8cc923a3250


Confidence interval 

-1.96*SEM      Mean       +1.96*SEM

Proportion of values

On either side of the mean

• Range of values that we can be 95% confident contains the true mean of 
the population

• Limits of 95% CI: [Mean - 1.96*SEM; Mean + 1.96*SEM] (SEM = SD/√N)

• On average 19/20 experiments include the population mean

https://statisticsbyjim.com/hypothesis-testing/confidence-interval/ 

https://statisticsbyjim.com/hypothesis-testing/confidence-interval/


To recap

• The Standard Deviation is descriptive
• Just about the sample

• The Standard Error and the Confidence Interval are 
inferential
• Sample → General Population

Statistical tests 
are also 

inferential



Question

Experimental Design

Sample Size

Experiment

Data Collection/Storage

Data Exploration

Data Analysis

Results



Quantitative data: Scatterplot



Quantitative data: Scatterplot/stripchart

Small sample Big sample



Quantitative data: Boxplot

https://www.researchgate.net/publication/328818609_Outcomes_and_features_of_the_inspection_of_receiver_tubes_ITR_system_for_improved_OM_in_parabolic_trough_plants

‘Normal’ outliers

‘Extreme’ outliers



Bimodal Uniform Normal
Distributions

A bean= a ‘batch’ of data

Data density mirrored by the shape of the polygon

Scatterplot shows individual data

Quantitative data: Boxplot or Beanplot (aka Violinplot)



Quantitative data: 
Boxplot and Violinplot and Scatterplot 



Big sample Small sample

Quantitative data: Histogram



Quantitative data: Histogram (distribution)



Data exploration ≠ plotting data

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork


Plotting is not inherently the same thing as exploring

C o n d A C o n d B

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

• One experiment: change in the variable of interest between CondA to CondB. 
❖Data plotted as a bar chart.
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p=0.001Comparisons: 
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• Five experiments: change in the variable of interest between 3 treatments and a 
control. 
❖Data plotted as a bar chart.

Plotting is not inherently the same thing as exploring
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• Five experiments: change in the variable of interest between 3 treatments and a 
control. 
❖Data plotted as a bar chart.

Plotting is not inherently the same thing as exploring



B e fo re  A fte r

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

• Four experiments: Before-After treatment effect on a variable of interest.

• Hypothesis: Applying a treatment will decrease the levels of the variable of interest.

❖ Data plotted as a bar chart.

B e fo re  A fte r

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0 Exp2

Exp1

Exp3

Exp4

Plotting is not inherently the same thing as exploring



Data exploration ≠ plotting data

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork


Key concepts and Assumptions
Analysis of Quantitative data

Choice of a statistical test
Hayley Carr & Anne Segonds-Pichon

v2024-05



• The null hypothesis (H0): H0 = no effect 

• The aim of a statistical test is to reject or 
not H0.

• High specificity = low False Positives = 
low Type I error

• High sensitivity = low False Negatives = 
low Type II error

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork

The null hypothesis and error types

Statistical decision True state of H0

H0 true (no effect) H0 false (effect)

Reject H0 Type I error α
False positive

Correct
True positive

Do not reject H0 Correct
True negative

Type II error β
False negative

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork


Statistical inferenceSample Population

Result

Statistic (t, F, …)
Is difference big 

enough?

Statistical test

Difference Variation Sample size

Difference

Is it meaningful? Is it real?
Determined 
scientifically

Significance



• Stats are all about understanding 
and controlling variation

• The ratio of signal to noise 
determines the significance

If the noise (interindividual 
variation) is low then the signal 
is detectable
       → statistical significance 

If the noise is large the same 
signal will not be detected 
       → no statistical significance

Signal-to-noise ratio 

Statistical test

Difference Variation Sample size

Difference (signal)

Variation (noise)

Signal
Noise

Signal

Noise



Choice of a statistical test

There are many statistical tests. Which one we use depends on:

• What we want to do
• The questions asked
• Correct statistical test to answer our questions

• What sort of data we have 
• The type and behaviour
• Correct statistical family

• There are 2 families of statistical tests:

• Parametric tests with 4 assumptions to be met
• Non-parametric tests with no or few assumptions and/or for 

qualitative data



• All parametric tests have 4 basic assumptions that must be met for the 
test to be accurate.

First assumption: Normality
• Normal shape, bell shape, Gaussian shape 

Assumptions of Parametric Data
What sort of data we have



• Frequent departures from normality:

• Skewness: lack of symmetry of a 
distribution

• Kurtosis: measure of the degree of 
‘peakedness’ 
• Same variance and same skew 

but differ markedly in kurtosis

Skewness > 0Skewness < 0 Skewness = 0

More peaked 
distribution: 
kurtosis > 0

Assumptions of Parametric Data
What sort of data we have

Flatter 
distribution: 
kurtosis < 0



Second assumption: Homoscedasticity (Homogeneity in variance)

• The variance should not change systematically throughout the data

Third assumption: Interval data (linearity)

• The distance between points of the scale should be equal at all parts along the 
scale

Fourth assumption: Independence

• Data from different subjects are independent

• Each data point in the sample is independent from all the others = Values 
corresponding to one subject do not influence the values corresponding to 
another subject

• Important in repeated measures experiments

Assumptions of Parametric Data
What sort of data we have



Non-parametric tests 

• General principle: original data are transformed into 
ranks

• Not meeting the assumptions for parametric tests is 
not enough to switch to a non-parametric approach

• Data exploration is key: 

• Outliers? 

• Possible transformation? 

• Parametric with corrections?

• If outcome is a rank or a score with limited possible 
values: often non-parametric approach
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Choice of a statistical test
St

ar
t

Differences?
How many 

factors?

Two or more
Two-way ANOVA, 

General Linear 
(Mixed) Model, etc.

One
Same or 
different 
subjects?

Same

Parametric
Paired T 

test/repeated 
ANOVA

Non-parametric Wilcoxon paired test

Different

Parametric T-test/ANOVA

Non-parametric
Mann-Whitney U 

test
Correlation?

Parametric
Pearson 

Correlation

Non-parametric
Spearman 

Rank 
Correlation

Categories?

2x2 table
Fisher’s Exact 

test

>2x2 table
Chi Square 

test



Choice of a statistical test
St

ar
t

Differences?
How many 

factors?

Two or more
Two-way ANOVA, 

General Linear 
(Mixed) Model, etc.

One
Same or 
different 
subjects?

Same

Parametric
Paired T 

test/repeated 
ANOVA

Non-parametric Wilcoxon paired test

Different

Parametric T-test/ANOVA

Non-parametric
Mann-Whitney U 

test
Correlation?

Parametric
Pearson 

Correlation

Non-parametric
Spearman 

Rank 
Correlation

Categories?

2x2 table
Fisher’s Exact 

test

>2x2 table
Chi Square 

test

Are the mice in group A 
heavier than those in group B?



Analysis of Quantitative data
Student’s t-test

Hayley Carr & Anne Segonds-Pichon
v2025-02



• Basic idea: 
• Comparison between 2 means accounting for variability

• Absolute difference vs. variability

Comparison between 2 groups 
Student’s t-test 

Control 
group mean 

Treatment 
group mean



Variability does matter

Medium 
variability

High 
variability

Low 
variability



Variability does matter

Group 1 Group 2
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Signal-to-noise ratio 

Signal
Noise

= statistical significance 

Signal

Noise
=  no statistical significance 

Difference (signal)

Variation (noise)



Student’s t-test 

Basically the combination of the 2 SEM

Signal

Noise

Difference between group means

Variability of groups
=

ҧ𝑥1 − ҧ𝑥2

𝑠2(
1

𝑛1
+

1
𝑛2

)
=

= t-value



• 3 types, depending on experimental design

• Independent t-test

• Difference between 2 means of one variable 
for two independent groups 

• Paired t-test

• Difference between two measures of one 
variable for one group

• One-Sample t-test 

• Difference between the mean of a single 
variable and a specified constant 

Student’s t-test 

Control Treatment

One experiment

4 different mice 4 different mice

Before After

Mouse 1

Mouse 2

Mouse 3

Same mouse



Example: coyotes.csv 

• Do male and female coyotes differ in size?

• The file contains individual body length of male and female coyotes.

• Steps:

• Load coyote.csv

• Data exploration

• Plot the data as boxplot, violinplot, histogram and stripchart

• Check the assumptions for parametric test



Example: Load coyote.csv

• Read in the data using read_csv after loading tidyverse 
package
• Use path to where your data is stored

• View the data: 

library(tidyverse)

coyote <- read_csv("Datasets to use/Coyotes.csv")

coyote

head(coyote)

View(coyote)

Or click on coyotes in Rstudio “Environment” tab



Example: Data exploration

• Explore data using 4 different representations

coyote %>%

  ggplot(aes(x=sex, y=length))+

  geom_...()



Example: Strip chart and line 



Example: Strip chart: geom_jitter()

• Variation of geom_point(): geom_jitter()

coyote %>%

  ggplot(aes(x=sex,y=length)) + 

  geom_jitter(height=0, width=0.2)

coyote %>%

  ggplot(aes(x=sex,y=length))+ 

  geom_point()



Example: Strip chart and line: 

stat_summary(geom=, fun=)

• Graphical representation = a line: geom="crossbar"

• Statistical summary, given function: fun = "mean" (or "median")

coyote %>%

  ggplot(aes(sex,length)) +

  geom_jitter(height=0, width=0.2) +

  stat_summary(geom="crossbar",

 fun="mean", width=0.6, 

linewidth=0.3)+



Example: Strip chart and line: 

stat_summary(geom=, fun.data=

• Can alternatively add error bars: geom="errorbar"

• Now need function incl. error bars: fun.data="mean_se" (default)

coyote %>%

  ggplot(aes(sex,length)) +

  geom_jitter(height=0, width=0.2) +

  stat_summary(geom="errorbar",

 fun.data="mean_se",

 width=0.3, linewidth=0.3)



Example: Strip chart: stat_summary()

stat_summary(geom="point", 

  fun=median, colour = "red",size = 3)+

stat_summary(geom="errorbar", 

  fun=median, fun.min=min,

  fun.max=max)

mean fun

max fun.max

min fun.min

stat_summary(geom=, 

 fun=, fun.min=, fun.max=)

• Can manually add min/max

# ggpubr # has more functions 
that can be useful:
mean_sd()

mean_ci()

mean_range()

median_iqr()

median_q1q3()

median_range()



Example: Histogram
geom_histogram() +

facet_grid(rows=vars(row),cols=vars(column))

One row

2 columns: one per sex

facet_grid(cols=vars(sex))

also works
facet_wrap(~sex)



coyote %>% 

  ggplot(aes(length)) + 

  geom_histogram(binwidth = 4.5,

 colour="black", 

 show.legend = FALSE) +

  facet_grid(cols=vars(sex))

Example: Histogram
geom_histogram() +

facet_grid(rows=vars(row),cols=vars(column))



Example: Data exploration

• Explore data using 4 different representations:
geom_jitter()

stat_summary(geom= "crossbar")

facet_grid(rows=vars(row),cols=vars(column))

geom_histogram()

coyote %>%

  ggplot(aes(x=sex, y=length))+

  geom_...()

geom_boxplot() geom_violin()



coyote %>%

  ggplot(aes(x=sex, y=length)) +

  geom_boxplot()

coyote %>%

  ggplot(aes(x=sex, y=length)) +

  geom_violin()

Example: Data exploration - Boxplots and violinplots



coyote %>%

  ggplot(aes(x=sex, y=length, fill=sex))+

 stat_boxplot(geom="errorbar", width=0.5)+

 geom_boxplot(show.legend=FALSE)+

  ylab("Length (cm)")+

  xlab(NULL)+

  scale_fill_manual(values = c("orange","purple"))

  

coyote %>%

  ggplot(aes(x=sex, y=length, fill=sex))+

    geom_violin(trim=FALSE, linewidth=1, show.legend=FALSE)+

    ylab("Length (cm)")+

    scale_fill_brewer(palette="Dark2")+

    stat_summary(geom = "point", fun = median, show.legend=FALSE) 

Example: Data exploration - Boxplots and violinplots



Example: Data exploration - Histograms
coyote %>%

  ggplot(aes(length, fill=sex))+

    geom_histogram(binwidth = 4.5, colour="black", show.legend = FALSE) +

    scale_fill_brewer(palette="Dark2")+

    facet_grid(cols=vars(sex))



Example: Data exploration - Stripcharts
coyote %>%

  ggplot(aes(x=sex,y=length, colour=sex)) +

    geom_jitter(height=0, size=4, width=0.2, show.legend = FALSE) +

    ylab("Length (cm)")+

    scale_colour_brewer(palette="Dark2")+

    xlab(NULL)+

    stat_summary(geom="crossbar", fun=mean, colour="black", linewidth=0.5, width=0.6)



Example extra: Data exploration - Combinations/overlays

• Explore data using 2 different combinations/overlays of graphs



coyote %>%

  ggplot(aes(x=sex, y=length)) +

  geom_violin() +

  geom_boxplot(width=0.2)

Example extra: Data exploration - Combinations/overlays

coyote %>%

  ggplot(aes(x=sex,y=length, fill=sex)) +

 geom_violin(linewidth=1, trim = FALSE, alpha=0.2, show.legend=FALSE) +

    geom_boxplot(width=0.2, outlier.size=5, outlier.colour = "darkred", show.legend=FALSE)+

 scale_fill_brewer(palette="Dark2")+

    ylab("Length (cm)")+

     xlab(NULL)+

  scale_x_discrete(labels=c("female"="Female", "male"="Male"), limits =c("male", "female"))



coyote %>%

  ggplot(aes(x=sex, y=length)) +

  geom_boxplot()+

  geom_jitter(height=0, width=0.2)

Example extra: Data exploration - Combinations/overlays

coyote %>%

  ggplot(aes(x=sex, y=length)) +

 geom_boxplot(outlier.shape=NA)+

 stat_boxplot(geom="errorbar", width=0.2)+     

 geom_jitter(height=0, width=0.1, size=2, alpha=0.5, colour="red")+

    ylab("Length (cm)")



Checking the assumptions



Normality assumption: QQ Plot 
QQ plot= Quantile – Quantile plot
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Equivalent dataset
Same sample size

Perfectly normal distribution

Normality  (ish)

Theoretical normal distribution

Poor QQ plot



Normality assumption: QQ plot

ggqqplot(coyote, x = "length", 

 facet.by = “sex") +  

  theme_bw()

model  <- aov(length ~ sex, 

 data = coyote)

ggqqplot(residuals(model)) + theme_bw() 



• First assumption: Normality

• Shapiro-Wilk test  shapiro_test() # rstatix package #
• Based on the correlation between the data and the corresponding 

normal scores 

coyote %>%

  group_by(sex) %>%

   shapiro_test(length)

Assumptions of Parametric Data

coyote %>%

  levene_test(length ~ sex)

Homogeneity in variance 

Normality 
Other classic: D’Agostino-Pearson test
dagoTest() # fBasics package #
Homoscedasticity
More robust: Brown-Forsythe test
bf.test() # onewaytests package #
Other classic: Bartlett test
bartlett.test()

model  <- aov(length ~ sex, 

 data = coyote)

shapiro_test(residuals(model))

• Second assumption: Homoscedasticity

• Levene test  levene_test()

Normality 
Other options: Core R



Independent Student’s t-test
To recap

coyote %>%

 t_test(length ~ sex, var.equal = TRUE)

• Data exploration and assumptions

• Student’s t-test  # rstatix package #

Much more important/useful



Independent Student’s t-test: results 

coyote %>%

 t_test(length~sex, var.equal = TRUE)

coyote %>%

  t_test(length~sex, var.equal = TRUE, detailed = TRUE) 

coyote %>%

  group_by(sex) %>%

  get_summary_stats(length, type = "mean_se")

t = 89.7 – 92.1/SQRT(0.992+1.022)
   = -1.64

• Answer: Males tend to be longer than females but not significantly so (p=0.1045)



Independent t-test: results
The old-fashion way

t = 1.641 < 1.984: not significant

Critical value



coyote %>%

 group_by(sex) %>%

 get_summary_stats(length, type = "mean_sd")

• Power: How many more coyotes to reach significance?

But does it make sense? 

Independent t-test: results
Power! 

With nearly 250 coyotes, we get a 
star



coyote %>%

  ggplot(aes(sex,length, colour=sex)) +

 geom_jitter(height=0, width=0.1)+

 geom_bar(stat = "summary", fun="mean", width=0.4, alpha=0, colour="black")

• Add error bars

coyote %>%

  ggplot(aes(sex,length, colour=sex)) +

    geom_jitter(height=0, width=0.1)+

    geom_bar(stat = "summary", fun="mean", width=0.4, alpha=0, colour="black")+

    stat_summary(geom="errorbar", colour="black", width=0.2)

Independent t-test: results
Plotting the data 



coyote %>%

  ggplot(aes(sex,length, colour=sex, fill=sex)) +

  geom_jitter(height=0, width=0.1, show.legend=FALSE, size=3, alpha=0.8)+

  geom_bar(stat="summary", fun="mean", width=0.4, alpha=0.2, colour="black", show.legend=FALSE)+

  stat_summary(geom="errorbar", colour="black", width=0.2)+

  scale_colour_brewer(palette="Dark2")+

  scale_fill_brewer(palette="Dark2")+

  theme(legend.position = "none")+

  scale_x_discrete(limits = c("male", "female"), labels = c("male"="Male", "female"="Female"))+

  scale_y_continuous(breaks=c(seq(0,110,10)), limits = c(0, 110))+

  xlab(NULL)+

  ylab("Length (cm)")

• Prettier version

Independent t-test: results
Plotting the data 



coyote %>%

  ggplot(aes(sex, length)) +

  stat_boxplot(geom="errorbar", width=0.2)+ 

  geom_boxplot(outlier.shape = NA)+

  geom_jitter(height=0, width=0.1, size = 2, alpha = 0.5, colour="red")+

  scale_x_discrete(limits = c("male", "female"), labels = c("male"="Male", "female"="Female"))+

  ylab("Length (cm)")+

  xlab(NULL)+

  geom_signif(comparisons = list(c("female", "male")), annotations = t_results$p)

# ggsignif package #
t_results <- coyote %>%

 t_test(length~sex, var.equal = TRUE)

Independent t-test: results
Plotting the data 



coyote %>%

  ggplot(aes(sex, length)) +

  stat_boxplot(geom="errorbar", width=0.2)+ 

  geom_boxplot(outlier.shape = NA)+

  geom_jitter(height=0, width=0.1, size = 2, alpha = 0.5, colour="red")+

  scale_x_discrete(limits = c("male", "female"), labels = c("male"="Male", "female"="Female"))+

  ylab("Length (cm)")+

  xlab(NULL)+

  geom_signif(comparisons = list(c("female", "male")), test = "t.test")

This also works but there is less control on the test.

Independent t-test: results
Plotting the data 

# ggsignif package #



• For paired t-test there are 2 ways of approaching:

• Calculate differences and use these as input to a one sample t-test

• Using paired version of t_test()on long form data

Dependent or Paired t-test 

working.memory.long <- working.memory %>%

  pivot_longer(cols= 2:3, names_to = "treatment", 

 values_to = "scores")

working.memory.long %>%

  arrange(Subject) %>%

  t_test(scores ~ treatment, paired = TRUE)-> stat.test

working.memory <- working.memory %>% 

  mutate(difference = DA.depletion - placebo) 

working.memory %>%

  t_test(difference ~ 1, mu=0, detailed = TRUE)



• Means also two ways of plotting – plotting differences or paired plots

working.memory.long %>%

ggpaired(x = "treatment", y = "scores", 

color = "treatment", id = "Subject",

palette = "Dark2", line.color = "gray", 

line.size = 0.4,

xlab = "Treatment", ylab = "Scores")+

scale_y_continuous(breaks=seq(from =0, by=5, to=60), 

    limits = c(0,60))+

stat_pvalue_manual(stat.test, label="p = {p}", 

y.position = 55)

# ggpubr package #
ggline()

Dependent or Paired t-test 

working.memory.long %>%

  arrange(Subject) %>%

  ggplot(aes(x=treatment, y=score, group=Subject))+

  geom_line(linewidth=1, colour = "grey")+ 

  geom_point(colour= "black", size = 2) +  

  scale_y_continuous(breaks=seq(from =0, by=5, to=60),

 limits = c(0,60)) +  

  geom_signif(comparisons = list(c("placebo", "DA.depletion")), 

 test = "t.test", test.args = list(paired=TRUE), 

 map_signif_level = TRUE)



Extra R: changing format
Simon Andrews, Anne Segonds-Pichon

v2021-09



Data file format: Example

Wide format

Long format

3 WT mice 3 KO mice

Gene 1

Gene 2
Gene 1

Gene 2

3 WT mice

3 KO mice



• pivot_longer()
• Takes multiple columns of the same type and puts 

them into a pair of key-value columns

• separate
• Splits a delimited column into multiple columns

• pivot_wider()
• Takes a key-value column pair and spreads them out to 

multiple columns of the same type

• unite
• Combines multiple columns into one

Wide to Long
A B C

A
A
A
B
B
B
C
C
C

WT_D1 WT D1

Long to Wide
A B C

A
A
A
B
B
B
C
C
C

WT_D1WT D1

Converting between formats: Tidying operations



working.memory %>%

  pivot_longer(cols= 2:3, names_to = "treatment", values_to = "scores")

    

Converting to ‘tidy’ format
wide to long



Exercise 2



Analysis of Quantitative data
One-Way ANOVA

Hayley Carr & Anne Segonds-Pichon
v2025-02



Analysis of Quantitative data
One-Way + Two-Way ANOVA

• One-way ANOVA
• Independent design
• Repeated measures design

• Two-way ANOVA (two factors/predictors)
• Tests each factor and interactions between them 
• Independent design
• Repeated measures design (time series)



Comparison between more than 2 groups
One factor = One predictor

One-Way ANOVA



 

Signal-to-noise ratio 

Signal
Noise

= statistical significance 

Signal

Noise
=  no statistical significance 

Difference (signal)

Variation (noise)



• If the variance amongst sample means is greater than the error/random variance, then 
F>1

• In an ANOVA, we test whether F is significantly higher than 1 or not

Analysis of variance: how does it work?

= F ratio

Signal

Noise

Difference between the means

Variability in the groups
=



Step 1: Omnibus test

• It tells us if there is a difference between the means but not which means are 
significantly different from which other ones

Step 2: Post-hoc tests

• Tell us if there are differences between the group means pairwise

• A correction for multiple comparisons will be applied on the p-values

• Should only be used when the ANOVA finds a significant effect

One-Way Analysis of variance 



Source of  variation Sum of Squares df Mean Square F p-value

Between Groups 18.1 4 4.5 6.32 0.0002

Within Groups 51.8 73 0.71

Total 69.9

Analysis of variance: how does it work?
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Source of  variation Sum of Squares df Mean Square F p-value

Between Groups

Within Groups

Total 69.9

Analysis of variance: how does it work?
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Source of  variation Sum of Squares df Mean Square F p-value

Between Groups 18.1

Within Groups

Total 69.9

Analysis of variance: how does it work?
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Source of  variation Sum of Squares df Mean Squares F p-value

Between Groups 18.1

Within Groups 51.8

Total 69.9

Analysis of variance: how does it work?
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Source of  variation Sum of Squares df Mean Squares F ratio p-value

Between Groups 18.1 k-1

Within Groups 51.8 n-k

Total 69.9

Analysis of variance: how does it work?
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df: degree of freedom with df = n-1
n = number of values, k = number of groups

Between groups: df = 4 (k-1)
Within groups: df = 73 (n-k = n1-1 + … + n5-1)

Signal

Noise



Source of  variation Sum of Squares df Mean Squares F ratio p-value

Between Groups 18.1 4 4.5

Within Groups 51.8 73 0.71

Total 69.9

Analysis of variance: how does it work?
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df: degree of freedom with df = n-1
18.2/4 = 4.5      51.8/73 = 0.71

Signal

Noise

Mean squares = Sum of Squares / n-1 = Variance!



Source of  variation Sum of Squares df Mean Squares F ratio p-value

Between Groups 18.1 4 4.5 6.34 0.0002

Within Groups 51.8 73 0.71

Total 69.9

Analysis of variance: how does it work?

Mean squares = Sum of Squares / n-1 = Variance

Variance between the groups

Variance within the groups (individual variability)
F ratio =

4.5

0.71
= = 6.34
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Step 1: Omnibus test

• It tells us if there is a difference between the means but not which means are 
significantly different from which other ones

Step 2: Post-hoc tests

• Tell us if there are differences between the group means pairwise

• A correction for multiple comparisons will be applied on the p-values

• Should only be used when the ANOVA finds a significant effect

One-Way Analysis of variance 



Comparison of more than 2 means

• Running multiple tests on the same data increases the familywise error rate
 = error rate across tests on the same experimental data

• One of the basic rules (‘laws’) of probability:
• The Multiplicative Rule: The probability of the joint occurrence of 2 or more 

independent events is the product of the individual probabilities

P(A,B) = P(A) × P(B)

For example:
P(2 heads) = P(head) × P(head) = 0.5 × 0.5 = 0.25



Familywise error rate

• Example: All pairwise comparisons between 3 groups A, B and C:
 = A-B, A-C and B-C

• Probability of making the Type I Error: 5%
 → probability of not making the Type I Error is 95% (= 1 – 0.05)

• Multiplicative Rule:
• Overall probability of no Type I errors = 0.95*0.95*0.95 = 0.857

• Probability of making at least one Type I Error = 1 – 0.857 = 0.143 or 14.3%
• Probability has increased from 5% → 14.3%

• For comparisons between 5 groups, the familywise error rate is 40% (=1-(0.95)n)



• Solution to increased familywise error rate = correction for multiple 
comparisons 

 → post-hoc tests

• Many different approaches:
•  Different statisticians addressed different issues

• e.g. unbalanced design, heterogeneity of variance, liberal vs 
conservative

• Two main ways to address the multiple testing problem:
• Familywise Error Rate (FWER) and False Discovery Rate (FDR)

• In all cases: 
 More tests → higher familywise error rate → more stringent correction

Familywise error rate



• Difference between FWER and FDR: 

• FWER: a p-value of 0.05 implies that 5% of all tests will result in false positives

• FDR: an adjusted p-value (or q-value) of 0.05 implies that 5% of significant tests will 
result in false positives

• FWER: Bonferroni: αadjust  = 0.05/n comparisons, e.g. 3 comparisons: 0.05/3=0.016

• Problem: very conservative leading to loss of power (lots of false negative)

• 10 comparisons: threshold for significance = 0.05/10 = 0.005

• Pairwise comparisons across 20,000 genes = 0.05/20,000 = 2.5x10-6

• FDR: Benjamini-Hochberg: controls the expected proportion of “discoveries” (significant 
tests) that are false (false positive)

• Correction applied only on the significant tests

• More power but increased Type I Errors

Multiple testing problem



Repeated measures One-Way ANOVA

• A new assumption:

• That the variances of the differences between all combinations of related conditions 
(or group levels) are equal – known as the assumption of sphericity

• The Mauchly’s test of sphericity is used to assess whether the assumption of 
sphericity is met

• If the assumption of sphericity is not met, a correction is applied

• Often the default as the assumption is seldom met

• Most common correction: Greenhouse-Geisser correction



Exercise: One-way ANOVA: Data Exploration 
protein.expression.csv

• Question: is there a difference in protein expression between the 5 cell lines?

• Load protein.expression.csv

• Plot the data using at least 2 types of graph
• geom_boxplot(), geom_jitter(), geom_violin()

• Draw a QQplot
• ggqqplot() #ggpubr package# 

• Check the first 2 assumptions with formal tests
• shapiro_test() levene_test() # rstatix package #



protein %>%

  ggplot(aes(x=line, y=expression, colour=line))+

  geom_boxplot(outlier.shape = NA)+

  geom_jitter(height=0, width=0.25, alpha=0.5, size=5)

Exercise: One-way ANOVA: Data Exploration

protein %>%

  ggplot(aes(x=line, y=expression, colour=line))+

  geom_jitter(height=0, width=0.3, alpha=0.5, size=5)+

 stat_summary(geom="crossbar", fun=mean, colour="black", linewidth=0.5)



Exercise: One-way ANOVA: Data Exploration

protein %>% 

  ggplot(aes(x=expression))+  

  geom_histogram(binwidth = 0.45, 

colour="black")

protein %>%  

  ggplot(aes(x=expression))+ 

  geom_histogram(aes(y=after_stat(density)), 

colour="black", fill="white")+  

  geom_density(alpha=0.2, fill="#FF6666") 

Histograms & density plots



Build an anova model so can extract residuals
model <- aov(expression ~ line, data = protein)

Then draw the QQ plot
ggqqplot(residuals(model)) + theme_bw()  

Exercise: One-way ANOVA: Data Exploration

#ggpubr package#

QQ plot



Or can look at groups individually
ggqqplot(protein, x = "expression", facet.by = "line")

Exercise: One-way ANOVA: Data Exploration

QQ plot



protein %>%

  group_by(line) %>% 

    identify_outliers(expression)

Exercise: One-way ANOVA: Data Exploration



model <- aov(expression ~ line, 

   data = protein)

protein %>%

  shapiro_test(residuals(model))

Exercise: One-way ANOVA: Data Exploration

What do we do now?

protein %>%

  levene_test(expression ~ line)

protein %>%

  group_by(line) %>% 

    shapiro_test(expression)



protein %>%

   ggplot(aes(x=line, y=expression, colour=line))+

     geom_jitter(height=0, width=0.2, size=3, show.legend=FALSE)+

     stat_summary(geom="crossbar", fun=mean, colour="black", linewidth=0.5) +

     scale_y_log10()

protein %>%

  mutate(log10.expression=log10(expression)) -> protein

One-way ANOVA
Change of scale 

+ scale_y_log10()
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protein %>%

  ggplot(aes(x=line, y=log10.expression, colour=line))+

  geom_boxplot()+

  geom_jitter(height=0, width=0.25, alpha=0.5, size=5)

One-way ANOVA
Log-transformed values

protein %>%

  ggplot(aes(x=line, y=log10.expression, colour=line))+

  geom_jitter(height=0, width=0.25, alpha=0.5, size=5)+

  stat_summary(geom="crossbar", fun=mean, linewidth=0.5)



model  <- aov(log10.expression ~ line, data = protein)

ggqqplot(residuals(model))

First assumption ✓

Before log-transformation

One-way ANOVA
Log-transformed values



protein %>%

  group_by(line) %>% 

    shapiro_test(log10.expression)

protein %>%

  levene_test(log10.expression ~ line)

Assumptions of Parametric Data
Formal tests

First assumption ✓ish

Second assumption ✓

model <- aov(log10.expression ~ line, 

  data = protein)

protein %>%

  shapiro_test(residuals(model))



• Task 1: omnibus test

• Task 2: post-hoc tests

Analysis of variance
Let’s do it

Default

data %>%

  anova_test(y~x)

data %>%

 emmeans_test(y~x, p.adjust.method="bonferroni")

data %>%

  tukey_hsd(y~x)

# emmeans package #Tukey correction Bonferroni correction

• Extra task: Plot confidence intervals



protein %>%

  anova_test(log10.expression~line)

protein %>%

  tukey_hsd(log10.expression~line) 

Analysis of variance

generalised effect size (Eta squared η2) = R2 ish

Tukey correction

Not the p-value!



protein %>%

  anova_test(log10.expression~line)

protein %>%

  emmeans_test(log10.expression ~ line, p.adjust.method = "bonferroni") # emmeans package #

Analysis of variance

generalised effect size (Eta squared η2) = R2 ish

Bonferroni correction



Analysis of variance 
Plot confidence intervals (forest plots)

protein %>%

  tukey_hsd(log10.expression~line)%>%

  mutate(comparison = paste(group1, sep=".", group2)) -> tukey.conf

tukey.conf %>%

  ggplot(aes(x=comparison, y=estimate, ymin=conf.low, ymax=conf.high)) +

   geom_errorbar(colour="black", linewidth=1)+

   geom_point(size=3, colour="darkred")+

   coord_flip()+

   geom_hline(yintercept=0, linetype="dashed", color = "red")+



protein %>%

  ggplot(aes(x=line, y=expression, colour=line))+

    geom_jitter(height = 0, width=0.2, size=6, show.legend=FALSE, alpha=0.5)+

    stat_summary(geom="errorbar",fun=mean,fun.min=mean,fun.max = mean, colour="black",

    linewidth=1)+

    scale_y_log10()

Analysis of variance
Stripchart



protein %>%

  ggplot(aes(x=line, y=expression, fill=line)) +

  geom_bar(stat="summary", fun="mean", colour="black", show.legend=FALSE)+

  stat_summary(geom="errorbar", colour="black", width=0.4)+

  geom_jitter(height=0, width=0.1, alpha=0.5, size=4,  show.legend=FALSE)

Analysis of variance
Overlay: stripchart and barchart



protein %>%

  ggplot(aes(x=line, y=log10.expression, fill=line)) +

  geom_boxplot(show.legend=FALSE)+  

 geom_jitter(height=0, width=0.1, alpha=0.5, size=4, show.legend=FALSE)

Analysis of variance
Overlay: boxplot and stripchart (log10 data)



protein %>%

  ggplot(aes(x=line, y=expression, fill=line)) +

  geom_boxplot(show.legend=FALSE)+  

 geom_jitter(height=0, width=0.1, alpha=0.5, size=4, show.legend=FALSE)+

 scale_y_log10()

Analysis of variance
Overlay: boxplot and stripchart (log scale)



proteins.tukey <- protein %>%

  tukey_hsd(log10.expression~line) %>%

  add_xy_position()

protein %>%

  ggplot(aes(x=line, y=log10.expression, colour=line)) +

  geom_boxplot(show.legend = FALSE)+  

  geom_jitter(height=0, width=0.1, alpha=0.5, 

 size=5, show.legend = FALSE)+

  stat_pvalue_manual(proteins.tukey,label="p = {p.adj}",

 label.size=4,tip.length=0.02,step.increase=0.02)+

  xlab("Cell lines")+

  ylab("Log10 Protein Expression")

Analysis of variance 
Graphical presentation with p-values

Approach 1: ggpubr 



Approach 2: also ggpubr 

Analysis of variance 
Graphical presentation with p-values

protein %>%  

  ggplot(aes(x=line, y=log10.expression, colour=line))+  

  geom_boxplot(show.legend = FALSE)+

  geom_jitter(height=0, width=0.1, alpha=0.5, 

 size=5, show.legend = FALSE)+

  stat_pwc(method = "tukey_hsd", label = "p.adj", 

 hide.ns = TRUE, show.legend = FALSE)+

  xlab("Cell lines")+ 

  ylab("Log10 Protein Expression")

protein %>%  

  ggplot(aes(x=line, y=log10.expression, colour=line))+  

  geom_boxplot(show.legend = FALSE)+

  geom_jitter(height=0, width=0.1, alpha=0.5, 

 size=5, show.legend = FALSE)+

  stat_pwc(method = "tukey_hsd", label = "p.adj.signif", 

 hide.ns = TRUE, show.legend = FALSE)+

  xlab("Cell lines")+ 

  ylab("Log10 Protein Expression")

OR



Analysis of variance 
Graphical presentation with p-values

sig.comp <- proteins.tukey %>%  

  filter(p.adj<0.05)

protein %>%  

  ggplot(aes(x=line, y=log10.expression, colour=line))+ 

  geom_boxplot(show.legend = FALSE)+      

  geom_jitter(height=0, width=0.1, alpha=0.5, 

 size=5, show.legend = FALSE)+ 

  geom_signif(comparisons = list(c("A","D"), c("B","D"), 

  c("B","E"), c("C","D")), 

 annotations = sig.comp$p.adj, 

 y_position = c(1, 1.1, 1.2, 1.3), colour = "black", 

 show.legend = FALSE)+ 

  xlab("Cell lines")+ 

  ylab("Log10 Protein Expression")

Approach 3: ggsignif



• For repeated measures ANOVA and post-hoc tests need to specify matching:

Experiment identifier

To choose the Reference group and 
account for the matched design

Analysis of variance 
Matched/repeated measures

anova_test(dv =, wid =, within =) -> res.aov

get_anova_table(res.aov) 

pairwise_t_test(p.adjust.method =)

neutrophils.long %>%  

  anova_test(dv = Values, wid = Experiment, 

 within = Condition) -> res.aov

get_anova_table(res.aov)

# post-hoc test

neutrophils.long %>%  

  pairwise_t_test(Values~Condition, paired=TRUE, 

 ref.group = "WT", p.adjust.method = "holm") 



• Again, when plotting want to show matching

Analysis of variance: Matched/repeated measures

neutrophils.long %>%

  ggplot(aes(x=Condition, y=Values, group=Experiment,

 colour=Experiment, fill=Experiment))+

  geom_line(linewidth=2)+

  geom_point(size=4, shape=21, 

 colour="black", stroke=2)

neutrophils.long %>%

  mutate(Condition=factor(Condition, 

 levels = c("WT", "KO", "KO+T1", "KO+T2")))

neutrophils.long %>%

  ggplot(aes(x=Condition, y=Values, colour=Experiment))+

  geom_boxplot(outlier.shape = NA, colour="black")+

  geom_jitter(height=0, width=0.2, 

 size=6, alpha=0.7)



Exercise 3



Analysis of Quantitative data
Two-way ANOVA

Hayley Carr & Anne Segonds-Pichon
v2025-02



Comparison between more than 2 groups
Two factors = Two predictors

Two-Way ANOVA



Two-way Analysis of Variance
(Factorial ANOVA)

Source of  variation Sum of 

Squares

Df Mean 

Square

F p-value

Variable A (Between 

Groups)

2.665 4 0.6663 8.42 <0.0001

Within Groups 

(Residual)

5.775 73 0.0791

Total 8.44 77

SST

Total variance in the Data
Total

SSR
Unexplained Variance

Within Groups

SSM

Variance Explained by the Model
Between Groups

SST

Total variance in the Data

SSM

Variance Explained by the Model

SSR
Unexplained Variance

SSB
Variance Explained by 

Variable B

SSAxB
Variance Explained by the 

Interaction of A and B

One-way ANOVA= 1 predictor variable 2-way ANOVA= 2 predictor variables: A and B 

SSA
Variance Explained by 

Variable A

Source of  variation Sum of 

Squares

Df Mean 

Square

F p-value

Variable A * Variable B 1978 2 989.1 F (2, 42) = 11.91 P < 0.0001

Variable B (Between 

groups) 3332 2 1666 F (2, 42) = 20.07 P < 0.0001

Variable A (Between 

groups) 168.8 1 168.8 F (1, 42) = 2.032 P = 0.1614

Residuals 3488 42 83.04



• Interaction plots: Examples

• Fake dataset: 
• 2 factors: Genotype (2 levels) and Condition (2 levels)

Genotype Condition Value

Genotype 1 Condition 1 74.8

Genotype 1 Condition 1 65

Genotype 1 Condition 1 74.8

Genotype 1 Condition 2 75.2

Genotype 1 Condition 2 75

Genotype 1 Condition 2 75.2

Genotype 2 Condition 1 87.8

Genotype 2 Condition 1 65

Genotype 2 Condition 1 74.8

Genotype 2 Condition 2 88.2

Genotype 2 Condition 2 75

Genotype 2 Condition 2 75.2

Two-way Analysis of Variance



Single Effect

Genotype Effect Condition Effect

Two-way Analysis of Variance

• Interaction plots: Examples

• 2 factors: Genotype (2 levels) and Condition (2 levels)



Zero or Both Effect

Zero Effect Both Effect

Two-way Analysis of Variance

• Interaction plots: Examples

• 2 factors: Genotype (2 levels) and Condition (2 levels)



Interaction

Two-way Analysis of Variance

• Interaction plots: Examples

• 2 factors: Genotype (2 levels) and Condition (2 levels)



Two-way Analysis of Variance

Example: crop.density.csv

• Want to know if planting density (1=low density, 2=high density) or fertiliser type (1, 
2, or 3) have an impact on crop yield

• Three null hypotheses:

• No difference in yield for any fertiliser type

• No difference in yield for either planting density

• Effect of fertiliser type or density on yield does not depend on the effect of the other 

variable

https://www.scribbr.com/statistics/two-way-anova/



Exercise: One-way ANOVA: Data Exploration 
crop.density.csv

• Want to know if planting density (1=low density, 2=high density) or fertiliser 
type (1, 2, or 3) have an impact on crop yield

• Graphically explore the data
• effect of density only
• effect of fertiliser only
• effect of both 

• Check the assumptions visually (plot+qqplot) and formally (test)

crop <- crop %>% 

  mutate(density= factor(density), 

   fertilizer = factor(fertilizer))



crop %>%  

  ggplot(aes(density, yield))+  

  geom_boxplot(outlier.shape = NA)+  

  geom_jitter(height=0, width=0.1))

Two-way Analysis of Variance

crop %>%  

  ggplot(aes(fertilizer, yield))+  

  geom_boxplot(outlier.shape = NA)+  

  geom_jitter(height=0, width=0.1)

• As always, first step: get to know the data



crop %>%  ggplot(aes(density, yield))+  

  geom_boxplot(outlier.shape = NA)+  

  geom_jitter(aes(density, yield, colour=fertilizer), 

 height=0, width=0.1, size=4)

crop %>%  ggplot(aes(fertilizer, yield))+  

  geom_boxplot(outlier.shape = NA)+  

  geom_jitter(aes(fertilizer, yield, colour=density), 

 height=0, width=0.1, size=4)

• As always, first step: get to know the data

Two-way Analysis of Variance



crop %>%  ggplot(aes(x=fertilizer, y=yield, fill=fertilizer))+  

  geom_boxplot(show.legend = FALSE, outlier.shape = NA)+  

  geom_jitter(height=0, width=0.2, size=5, alpha=0.5, show.legend = FALSE)+  

  facet_grid(cols=vars(density))+  

  scale_fill_brewer(palette="Dark2")

Two-way Analysis of Variance



crop %>%  ggplot(aes(x=density, y=yield, fill=density))+  

  geom_boxplot(show.legend = FALSE, outlier.shape = NA)+  

  geom_jitter(height=0, width=0.1, size=5, alpha=0.5, show.legend = FALSE)+  

  facet_grid(cols=vars(fertilizer))+  

  scale_fill_brewer(palette="PuOr")

Two-way Analysis of Variance



Two-way Analysis of Variance
Checking the assumptions

model  <- aov(yield ~ fertilizer*density, data = crop)

ggqqplot(residuals(model)) +  theme_bw()

First assumption ✓



crop %>%  

  group_by(fertilizer, density) %>%   

  shapiro_test(yield)

crop %>%  

  levene_test(yield ~ fertilizer*density)

First assumption ✓

Second assumption ✓

Two-way Analysis of Variance
Checking the assumptions

model  <- 

  aov(yield ~ fertilizer*density, 

 data = crop)

shapiro_test(residuals(model))



• Run the first step of the ANOVA

• Run the second step (post-hoc tests)

Two-way Analysis of variance
Let’s do it

data %>%

  anova_test(y ~ factor1 + factor2 + factor1*factor2)

data %>%

  tukey_hsd(y ~ factor1*factor2)

• Run post-hoc tests by fertiliser and density

• Extra task: plot the stats results on the graphs



crop %>%

  anova_test(yield ~ density + fertilizer + density*fertilizer)

Two-way Analysis of Variance
Omnibus test

Gives same results as 
density*fertilizer 

but explicitly specifies



crop %>% 

tukey_hsd(yield ~ fertilizer*density)

Two-way Analysis of Variance
Post-hoc tests

Gives all comparisons, can be too 
much: overcorrecting!



crop %>% 

  group_by(density) %>%

  emmeans_test(yield ~ fertilizer, 

 p.adjust.method = "bonferroni")

Two-way Analysis of Variance
Post-hoc tests by density level

More specific – fewer unnecessary comparisons



crop %>% 

  group_by(density) %>%

  emmeans_test(yield ~ fertilizer, 

 p.adjust.method = "bonferroni")%>%

  add_xy_position(x = “fertilizer") %>%

  ungroup()-> results.density

Two-way Analysis of Variance
Post-hoc tests by density level: with p-values on graph

crop %>%

  ggplot(aes(x=fertilizer, y=yield))+

  geom_boxplot(linewidth=1, aes(fill = fertilizer, alpha=0.5), show.legend = FALSE, 

 outlier.shape = NA)+

  geom_jitter(height=0, width=0.2, size=5, alpha=0.5, show.legend = FALSE)+

  facet_grid(cols=vars(density))+

  scale_fill_brewer(palette="Dark2")+

  stat_pvalue_manual(results.density, label = "p = {round(p.adj, digits=4)}")

# ggpubr package #



crop %>%

  group_by(fertilizer) %>%

  emmeans_test(yield ~ density, p.adjust.method = "bonferroni")

Two-way Analysis of Variance
Post-hoc tests by fertilizer



crop %>%

  group_by(fertilizer) %>%

  emmeans_test(yield ~ density, p.adjust.method = "bonferroni")%>%

  add_xy_position(x = "density") %>%

  ungroup()-> results.fertilizer

Two-way Analysis of Variance
Post-hoc tests by fertilizer with p-values on graph

crop %>%

  ggplot(aes(x=density, y=yield))+

  geom_boxplot(show.legend = FALSE, outlier.shape = NA, aes(fill=density))+

  geom_jitter(height=0, width=0.1, size=5, alpha=0.5, show.legend = FALSE)+

  facet_grid(cols=vars(fertilizer))+

  scale_fill_brewer(palette="PuOr")+

  stat_pvalue_manual(results.fertilizer, label = "p = {round(p.adj, digits=4)}")

# ggpubr package #



Two-way Analysis of Variance

crop %>%

  group_by(fertilizer, density)%>%

    summarise(mean=mean(yield))

 -> crop.summary

• Now a quick way to have a look at the interaction

crop.summary %>%

  ggplot(aes(x=fertilizer, y= mean, 

 colour=density, group=density))+

  geom_line(size = 1)+

  geom_point(size = 3)



Analysis of Quantitative data
Correlation & linear regression

Hayley Carr & Anne Segonds-Pichon
v2025-02



Association between 2 continuous variables
One variable X and One variable Y

Linear relationship
Correlation and Regression



 

Signal-to-noise ratio 

Signal
Noise

= statistical significance 

Signal

Noise
=  no statistical significance 

Difference (signal)

Variation (noise)



Signal-to-noise ratio and Correlation 

• For correlation, signal is similarity of behaviour between variable x and variable y

Covariance

CO𝑉𝑥𝑦

S𝐷𝑥S𝐷𝑦
Standard Deviation

r

• Coefficient of correlation:  r =

Difference (signal)

Variation (noise)

Signal

Noise

Similarity

Variability
=

Similarity

Variability



• Most widely-used correlation coefficient:

• Pearson product-moment correlation coefficient: r

• The magnitude and the direction of the relation 
between 2 variables

• Designed to range in value between -1 and +1

• Often look for >|0.6|

• Coefficient of determination: r2

• Gives the proportion of variance in Y that can be 
explained by X 

• Helps with the interpretation of r

• Basically the effect size

Correlation

Coefficient 
(+ve or –ve)

Strength of 
relationship

0.0 to 0.2 Negligible

0.2 to 0.4 Weak

0.4 to 0.7 Moderate

0.7 to 0.9 Strong

0.9 to 1.0 Very strong
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Power!!
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Pearson correlation is a parametric test for linear relationships
First assumption for parametric test: Normality
Correlation: bivariate Gaussian distribution

Correlation: Assumptions

Symmetry of the values on either side of the line of best fit.



Correlation and regression

Line of best fit comes from a regression

Correlation: nature and strength of the association

Regression: nature and strength of the association and prediction

Correlation = Association Regression = Prediction
Y = A*X + B

x

Y
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Correlation
treelight.csv

Amount of light in a tree



• Question:
• What is the nature and the strength of the relationship between depth and light?

Read in the data and create initial plot

Correlation: treelight.csv

read_csv("treelight.csv") -> treelight

treelight %>% ggplot(aes(Depth, Light))+  

  geom_point(size=3, colour="green4")



• Question:
• What is the nature and the strength of the relationship between depth and light?

Correlation: treelight.csv

treelight %>%

   cor_test(Depth, Light)

# rstatix package #



• Next we want to add a line of best-fit: Y = A + B*X 

Correlation: treelight.csv

Y=intercept + slope*X



• For the line of best-fit: 3 new functions

lm(y~x, data=) -> fit

coefficients(fit) -> coef.fit (vector of 2 values)
geom_abline(intercept=coef.fit[1], slope=coef.fit[2])

lm(Light ~ Depth, data=treelight)-> fit.treelight

coefficients(fit.treelight) -> coef.treelight

coef.treelight

intercept   slope

Core R

coef.treelight[1]

(Intercept) 

5013.982 

With the tree data:

Correlation: treelight.csv



treelight %>%

  ggplot(aes(x=Depth, y=Light)) +

  geom_point(size=4, colour=“green4") +

  geom_abline(intercept = coef.treelight[1], slope = coef.treelight[2])

Correlation: treelight.csv



treelight %>%

   cor_test(Depth, Light)

Line of best fit: Y=5013.98 – 292.16*X

summary(fit.treelight)

Correlation: treelight.csv



• If have outlying points and/or you are interested in fitting the best line for your data 
overall, there are more considerations

• Outliers: the observed value for the point is very different from that predicted by the 
model.

Correlation: Other considerations
Outliers and High leverage points



Correlation
Error a.k.a. Distance a.k.a. Residual
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• Outliers: the observed value for the point is very different from that predicted by the 
model = big residual

Residual
=

Distance
= 

Error



Correlation
Outliers and High leverage points

• Leverage points: A leverage point is defined as an observation that has a value of x that is 
far away from the mean of x. A point with high leverage has the potential to dramatically 
impact the model.

• Outlier: high discrepancy: a point has an unusual y-value given its x-value
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Correlation
Outliers and High leverage points



Outlier but not influential value
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Correlation
Outliers and High leverage points



High leverage but not influential value
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Correlation
Outliers and High leverage points
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Outlier and High leverage: Influential value

Outlier + high leverage

Correlation
Outliers and High leverage points



• One way to identify influential observations: the Cook’s distance: 

• Combination of each observation’s leverage and residual values

• Higher leverage and residuals → higher Cook’s distance = more likely an influential 
observation
• Summarizes how much all the values in the regression model change when the ith 

observation is removed.
prediction for observation j from full model

prediction for observation j, when the fit does 
not include observation i

the number of regression coefficients 
(predictors)

the estimated variance from the fit, based on all 
observations, i.e. Mean Squared Error

Correlation
Outliers and High leverage points = 

Influential observation 

Sum of squared differences



• Consensus: Cook’s distance D > 1 (0.5): likely to be an influential value
• “Observation which deviates so much from other observations as to arouse suspicion it was 

generated by a different mechanism” — Hawkins (1980)

• Classic method to find influential points is to compare the fit of the model with and 
without the outlying point

https://lymilynn.medium.com/a-little-closer-to-cooks-distance-e8cc923a3250

Correlation
Outliers and High leverage points = 

Influential observation 

https://lymielynn.medium.com/a-little-closer-to-cooks-distance-e8cc923a3250


• Consensus: standardised residual > 3: likely to be an outlier

• Classical way to identify outliers is to look at the residuals

• A value with a big residual is poorly fitted by the model

Residual
=

Distance
= 

Error

Correlation
Residuals to deal with dodgy values



• Questions: 
• What is the nature and the strength of the relationship between X and Y?
• Are there any dodgy points?

Correlation: correlation.csv



• Question: are there any dodgy points?

read_csv("correlation.csv") -> correlation

correlation %>%

  ggplot(aes(x=variable.x, y=variable.y)) + 

  geom_point(size=5, colour="sienna2")

Correlation: correlation.csv



correlation %>%

  ggplot(aes(x=variable.x, y=variable.y, label = ID)) +

  geom_point(size=3, colour="sienna2") +

  geom_abline(intercept = coef.correlation[1], slope = coef.correlation[2])+

  geom_text(vjust = 1.3, nudge_x = 0.2)

Correlation: correlation.csv

lm(variable.y ~ variable.x,

   data=correlation)-> fit.correlation

coefficients(fit.correlation) ->

   coef.correlation



correlation %>%

  ggplot(aes(x=variable.x, y=variable.y, label = ID)) +

  geom_point(size=5, colour="sienna2") +

  geom_abline(intercept = coef.correlation[1], slope = coef.correlation[2])+

  geom_text(vjust = 1.3, nudge_x = 0.2)

How good is the fit?
summary(fit.correlation)

Correlation?
correlation %>%

   cor_test(variable.x, variable.y)

Correlation: correlation.csv



correlation %>%

   cor_test(variable.x, variable.y)

summary(fit.correlation)

Correlation: correlation.csv
How good is the fit?

Correlation?

Line of best fit: Y=8.38 + 3.59*X



Linearity, homoscedasticity and outlier Normality and outlier

Homoscedasticity Influential cases

Correlation: correlation.csv
Assumptions, outliers and influential cases

gglm(fit.correlation, theme = theme_bw(base_size = 16))

# gglm package #



par(mfrow=c(2,2))

plot(fit.correlation)

Linearity, homoscedasticity and outlier Normality and outlier

Homoscedasticity Influential cases

Core R

Correlation: correlation.csv
Assumptions, outliers and influential cases



Have a go: Remove ID 23, then re-run the model and plot the graph again.
Hint: you may need cooks.distance() rstandard() and filter()

Correlation: correlation.csv



cooks.distance(fit.correlation)-> cook

rstandard(fit.correlation)-> residual

correlation %>%

  add_column(cook) %>%

  add_column(residual) -> correlation

correlation %>%

  filter(cook<1) -> correlation.23

lm(variable.y ~ variable.x, correlation.23)-> fit.correlation.23

summary(fit.correlation.23)

Correlation: correlation.csv

From r2 = 0.6128



cooks.distance(fit.correlation)-> cook

rstandard(fit.correlation)-> residual

correlation %>%

  add_column(cook) %>%

  add_column(residual) -> correlation

correlation %>%

  filter(cook<1) -> correlation.23

lm(variable.y ~ variable.x, correlation.23)-> fit.correlation.23

summary(fit.correlation.23)

Correlation: correlation.csv

From r2 = 0.6128



correlation.23 %>%

  cor_test(variable.x, variable.y)

Correlation: correlation.csv

correlation.23 %>%

  ggplot(aes(x=variable.x, y=variable.y, label = ID)) +

  geom_point(size=, colour="sienna2") +

  geom_abline(intercept = coef.correlation.23[1], slope = coef.correlation.23[2])+

  geom_text(vjust = 1.3, nudge_x = 0.2)

coefficients(fit.correlation.23) -> coef.correlation.23

From r = 0.78



• Confidence interval → how well we have determined a particular parameter 
e.g. mean or coefficient of regression

Correlation: correlation.csv
Let’s add confidence bands to the graph



correlation.23 %>%

  ggplot(aes(x=variable.x, y=variable.y, label = ID)) +

  geom_point(size=4, colour="sienna2") +

  geom_abline(intercept = coef.correlation.23[1], slope = coef.correlation.23[2])+

  geom_text(vjust = 1.3, nudge_x = 0.2)+

  geom_smooth(method=lm, fill="red", alpha=0.1)+

  scale_x_continuous(breaks=seq(from=0, by=2, to=20))+

  scale_y_continuous(breaks=seq(from=0, by=10, to=80))

Correlation: correlation.csv
Let’s add confidence bands to the graph

21 falls well outside 
confidence bands



Correlation: correlation.csv
Let’s take care of ID 21

gglm(fit.correlation.23, theme = theme_bw(base_size = 16))



Correlation: correlation.csv
Let’s take care of ID 21

par(mfrow=c(2,2))

plot(fit.correlation.23)



• Consensus: standardised residual > 3: likely to be an outlier

• Classical way to identify outliers is to look at the residuals

• A value with a big residual is poorly fitted by the model

• Residuals can be positive or negative – look at absolute

Residual
=

Distance
= 

Error

Correlation
Residuals to deal with dodgy values



rstandard(fit.correlation.23) -> residual23 

cooks.distance(fit.correlation.23) -> cook23

correlation.23 %>%

  select(-cook, -residual) %>%

  add_column(cook23) %>%

  add_column(residual23) %>%

  filter(abs(residual23) < 3) -> correlation.23.21

Correlation: correlation.csv
Let’s take care of ID 21



Correlation: correlation.csv
Let’s remove ID 21 as well

lm(variable.y ~ variable.x, correlation.23.21) -> fit.correlation.23.21

summary(fit.correlation.23.21)

correlation.23.21 %>%

  cor_test(variable.x, variable.y)

From r = 0.96

From r2 = 0.93



Correlation: correlation.csv
Finally



Correlation: correlation.csv
Final code for pretty graph

correlation.23.21%>%

  ggplot(aes(x=variable.x, y=variable.y, label = ID)) +

  geom_point(size=4, colour="sienna2") +

  geom_abline(intercept = coef.correlation.23.21[1], slope = coef.correlation.23.21[2])+

  geom_text(vjust = 1.3, nudge_x = 0.2)+

  geom_smooth(method=lm, se=TRUE, level=0.95, fill="red", alpha=0.1)+

scale_x_continuous(breaks=seq(from=0, by=2, to=20))+

  scale_y_continuous(breaks=seq(from=0, by=10, to=80))+

  annotate(geom="text", label="r = 0.99, p = 4.23e-17, r2 = 98%", x=10, y=6, size=10,colour="darkblue")

Depends on what your aim is:
• If want to predict, want the best model
• If want to best represent your data, 

might not want to exclude
Beware of overfitting



Exercise 4



Analysis of Quantitative data
Introduction to Linear Modelling

Hayley Carr & Anne Segonds-Pichon
v2025-02



Linear modelling is about language

Is there a difference between the cell lines?

Can cell line predict expression?
Model(line) = expression



Simple linear model
Linear regression

Correlation: is there an association between 2 variables?

Regression: is there an association and 

 can one variable be used to predict the values of the other?

Correlation = Association Regression = Prediction
Y = A*X + B

x

Y
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• Linear regression models the dependence between 2 variables:
 a dependent y and a independent x

Model(x) = y

               

• In R:
Linear regression: lm()

response
predictor

Model

Simple linear model



• Example: treelight.csv 

treelight<-read_csv("treelight.csv")

• Question: how is light affected by the depth at 
which it is measured?

                                 light = β0 + β1*depth

Linear regression

treelight %>%

  ggplot(aes(x=Depth, y=Light))+

  geom_point(colour="forestgreen", size=3)



Linear regression
coefficients(fit.treelight) -> coef.treelight

treelight %>%

  ggplot(aes(x=Depth, y=Light)) +

  geom_point(size=4, colour=“green4") +

  geom_abline(intercept = coef.treelight[1], slope = coef.treelight[2])

light = 5014 - 292*depth



Continuous predictor Categorical predictor

Coyotes body length

• Is there a difference between the 2 sexes?

becomes

• Does sex predict coyote body length?

The linear model perspective



The linear model perspective

Coyotes = Body length~sex

Protein = Expression~Cell line

Crop = Yield~Fertiliser and Density



• Questions:  do male and female coyotes differ in size?
• Does sex predict coyote body length? 

• How much of body length is predicted by sex?

Example: coyotes 



Exercises: coyotes

• coyote.csv  coyote <- read_csv("coyote.csv")
• Run the t-test again t_test()
• Run the same analysis using a linear model approach lm()
• Compare the outputs and understand the coefficients from lm()
• Use summary() and anova() to explore further
• Work out R2 from the anova() output
• Don’t forget to check the assumptions



read_csv("coyote.csv") -> coyote

coyote %>%

  ggplot(aes(x=sex, y=length, colour=sex)) +

    geom_jitter(height=0, size=4, width=0.2) +

    theme(legend.position = "none")+

    ylab("Length (cm)")+

    scale_colour_brewer(palette="Dark2")+

    xlab(NULL)+

    stat_summary(fun=mean, fun.min=mean, fun.max=mean, geom="errorbar",colour="black", linewidth=1.2,

    width=0.6)

The linear model perspective
Comparing 2 groups



lm(length~sex, data=coyote)

Females=89.71 cm,  Males=89.71 + 2.34=92.05

coyote %>%

  t_test(length~sex, var.equal=T)

The linear model perspective
Comparing 2 groups



lm(length~sex, data=coyote)

Body length = β0 + β1*sex

Body length = 89.712 + 2.344*sex

Model

The linear model perspective
Comparing 2 groups



treelight.csv  
light = 5014 - 292*depth

coyote.csv

Body length = 89.712 + 2.344*sex

continuous

categorical

y = β0 + β1*x

vector

y = β0 + β1*x

The linear model perspective
Comparing 2 groups



Model

Residuals

The linear model perspective
Comparing 2 groups



linear.coyote<-lm(length~sex, data=coyote)

linear.coyote

86 coyotes

Female 1: 89.71 + 3.29 = 93 cm 

The linear model perspective
Comparing 2 groups



summary(linear.coyote)

coyote %>%

  t_test(length~sex, var.equal=T)

The linear model perspective
Comparing 2 groups



summary(linear.coyote)

anova(linear.coyote)

118.1 + 3684.9 = 3803:  total amount of variance in the data
Proportion explained by sex: 118.1/3803 = 0.031

About 3% of the variability
 in body length is explained 
by sex

The linear model perspective
Comparing 2 groups

R2 = coefficient of determination
Same as in correlation/linear regression
= Variability in y explained by x



Coefficient of determination
An illustration: change in variability

variability     R2           p-value 



Coefficient of determination
An illustration: change in variability

variability     R2           p-value 



Coefficient of determination
An illustration: change in sample size

n=86 n=258n=172

t-test t-test t-test

ns * **



Coefficient of determination
An illustration: change in sample size

n=86 n=258n=172

ns * **

Sample  = Power                   R2 does not change but p-value 



linear.coyote

Assumptions

gglm(linear.coyote, theme = theme_bw(base_size = 16))

The linear model perspective
Comparing 2 groups



• Questions: do male and female coyotes differ in size?
• Does sex predict body length? 

• Answer: Quite unlikely: p = 0.105

• How much of body length is predicted by sex?

• Answer: About 3% (R2=0.031)

Example: coyote.csv



protein.expression.csv

• Questions: is there a difference in protein expression between the 5 cell lines?
• Does cell line predict protein expression?

• How much of the protein expression is predicted by the cell line?

The linear model perspective
One factor with more than 2 levels



Exercise: protein expression

• protein.expression.csv  protein<-read_csv("protein.expression.csv")
• Log-transformed the expression log10()
• Run the ANOVA again using anova_test() 
• Use lm() and summary() for the linear model approach
• Compare the 2 outputs
• Work out the means log10.expression for the 5 cell lines
• Compare the outputs and understand the coefficients from lm()
• Work out R2 from the anova() output
• Don’t forget to check out the assumptions



protein %>%

  anova_test(log10.expression~line)

protein %>%

  tukey_hsd(log10.expression~line) 

Analysis of variance

Tukey correction



linear.protein<-lm(log10.expression~line, data=protein)

summary(linear.protein)

anova(linear.protein)

lm(log10.expression~line,data=protein)

Analysis of variance: The Linear model perspective

protein %>%

  anova_test(log10.expression~line)



lm(log10.expression~line,data=protein)

Example:
Line B = -0.03-0.25 = -0.28

Model

Expression= β0 + β1*Line

protein %>%

  group_by(line) %>%

    summarise(mean=mean(log10.expression))

Analysis of variance: The Linear model perspective



gglm(linear.protein, theme = theme_bw(base_size = 16))

Analysis of variance: The Linear model perspective



linear.protein<-lm(log10.expression~line,data=protein)

summary(linear.protein)

2.691 + 6.046 = 8.737:  total amount of variance in the data
Proportion explained by cell line: 2.691/8.737 = 0.308

Proportion of variance explained 
by cell lines: 31%

protein %>%

  anova_test(log10.expression~line, detailed = TRUE)

SSn

SSd
+

Analysis of variance: The Linear model perspective



• Questions: is there a difference in protein expression between the 5 cell lines?
• Does cell line predict protein expression?

• Answer: Yes p=1.78e-05

• How much of the protein expression is predicted by the cell line?

• Answer: About 31% (R2=0.308)

Analysis of variance: The Linear model perspective



Default reference group/level

linear.protein<-lm(log10.expression~line, data=protein)

summary(linear.protein)

Intercept = 
Reference level = Line A

Linear model: Additional customisation



Choosing the reference group/level

protein %>%

  mutate(line = factor(line)) %>% 

  mutate(line = relevel(line, ref = "B")) -> protein

linear.protein<-lm(log10.expression~line, data=protein)

summary(linear.protein)

Intercept = 
Reference level = Line B

Linear model: Additional customisation



With n factors

Linear model

y = β0 + β1*x

y = β0 + β1*x1 + β2*x2 + β3*x1x2

y = β0 + β1*x1 + β2*x2 + β3*x1x2 + … + βn*xn 

yi = (β0 + β1*xi) + Ɛi 

yi = (model) + errori 

Simplest

With 2 factors

Let’s not forget the error

General formula



yi = (model) + errori 

Linear model

One-way ANOVA Two-way ANOVA

t-test

ANCOVA

Correlation



Analysis of Quantitative data
Non parametric statistics

Hayley Carr & Anne Segonds-Pichon
v2025-02



Non-parametric tests 

• General principle: original data are transformed into 
ranks

• Not meeting the assumptions for parametric tests is 
not enough to switch to a non-parametric approach

• Data exploration is key: 

• Outliers? 

• Possible transformation? 

• Parametric with corrections?

• If outcome is a rank or a score with limited possible 
values: often non-parametric approach
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A B
60

80

100

120

Original data

Non-parametric tests 

• General principle: original data are transformed 
into ranks

• Beware of misinterpretation: distribution of the 
data

• Distributions = symmetrical and similar → 
compares means

• Distributions = similar → compares medians

• Distributions = not similar → compares 
distributions (though not always)

• A correction is applied when there are ties
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Comparison between 2 groups
Non-Parametric data



• Non-parametric equivalent of the t-test (and not)

• In the case of inequality of variance (violation of the homoscedasticity assumption), the ‘unequal’ 
version of the t-test is a possibility: Welch’s t-test

• For a correct interpretation of the test: Data exploration!

• Mann-Whitney U test (Mann–Whitney–Wilcoxon, 

 Wilcoxon rank-sum test or Wilcoxon–Mann–Whitney) 

• Wilcoxon: equal sample size

• Mann and Whitney: different sample size

Comparison between 2 independent groups
Mann-Whitney U test

 

Control Treatment 1

4 different mice 4 different mice



• How does the Mann-Whitney U test work?

Group 1 Group 2

5 8
7 9
3 6

• Statistic of the Mann-Whitney test: U (W)
U1 = 7-6 = 1 and U2 = 14-6 = 8
• Smallest of the 2 Us: U1 
• U1 comparison to critical value + sample size       p-value

Real values Ranks
3 1
5 2
6 3
7 4

8 5
9 6

Group 1 Group 2
2 5
4 6

1 3

Sum R1=7 R2=14
Where:
•R = sum of ranks
•n = sample size

Comparison between 2 independent groups
Mann-Whitney U test

 

Control Treatment 1

4 different mice 4 different mice• R tidyverse: wilcox_test(y~x)



• Non-parametric equivalent of the paired t-test (ish)

• Information about the Mann-Whitney test also applies

• How does the Wilcoxon’s signed-rank test work?

• Statistic of the Wilcoxon’s signed-rank test: Sum of signed ranks = W
• Here: W = -35 + 1 = -34
• Statistic W + sample size         p-value

Before After Differences
9 3 -6

7 4 -3
10 4 -6

8 5 -3

5 6 1
8 2 -6

7 7 0
9 4 -5

10 5 -5

Abs. Diff. Ranking Ranks
0
1 1 1
3 2 2.5
3 3 2.5
5 4 4.5
5 5 4.5
6 6 7
6 7 7
6 8 7

2+3=5/2=2.5: average rank

Negative ranks Positives ranks
1

-2.5
-2.5
-4.5
-4.5

-7
-7
-7

Sum -35 1

Comparison between 2 paired groups
Wilcoxon’s signed-rank test Before After

Mouse 1

Mouse 2

Mouse 3

Same mouse

R: wilcox_test(y~x, paired = TRUE)



Comparison between more than 2 groups
One factor

Non-Parametric data



• Non-parametric equivalent of the One-Way ANOVA (ish)
• Data replaced by ranks
• Data exploration

• If data represent different distributions: comparison of said distributions
• If original data come from similar distributions: comparison of the medians

• Kruskal-Wallis: independent measures
• Statistic = H 

• Friedman: repeated measures
• Statistic = Q or T1 or FM 

• Post-hoc test associated with Kruskal-Wallis and Friedman: Dunn’s test
• Works pretty much like the Mann-Whitney test

Non-parametric tests 
Kruskal-Wallis and Friedman tests



No Once Twice

63 0 2239

-261 -652 171

-153 4724 40

-13 -2 1395

965 0

-86

No Once Twice

10 7.5 14

2 1 11

3 15 9

5 6 13

12 7.5

4

32 41 47

Actual values: n=15 Ranks: 15

Where:
•n = total sample size across all groups
•c = number of groups
•Tj = sum of ranks in the jth group
•nj = size of the jth group

𝐇 =
12

15 15 + 1
(
322

5
+

412

6
+

472

4
) − 3 15 + 1 = 3.868

Comparison between more than 2 groups 
Independent: Kruskal-Wallis test 

Interpretation of the test: H + degrees of freedom = p-value

𝐇 =
12

𝑛 𝑛 + 1
෍

𝑗=1

𝑐
𝑇𝑗

2

𝑛𝑗
− 3(𝑛 + 1)

kruskal_test(y~x) produces omnibus part of the analysis 

dunn_test(y~x) produces pairwise comparisons results 
# dunn.test package #



Violinists Violin A Violin B Violin C

1 9 7 6
2 9.5 6.5 8

3 5 7 4
4 7.5 7.5 6

5 9.5 5 7
6 7.5 8 6.5
7 8 6 6

8 7 6.5 4
9 8.5 7 6.5

10 6 7 3

Actual values Ranks
Violinists Violin A Violin B Violin C
1 3 2 1

2 3 1 2
3 2 3 1
4 2.5 2.5 1

5 3 1 2
6 2 3 1

7 3 1.5 1.5
8 3 2 1
9 3 2 1

10 2 3 1

Sum RA = 26.5 RB=21 RC=12.5

• Basic idea: if the sums are very different (here RA RB and RC) the p-value will be small.

Matched set of values

Interpretation of the test: Q or T1 or FM + df= p-value

Comparison between more than 2 groups 
Matched/repeated: Friedman test

friedman_test(y~x|id)

wilcox_test(y~x, 

 paired = TRUE, 

p.adjust.method = 

"bonferroni")

Where:
•N = the number of 
subjects (violinists)
•k = number of groups 
(violins)
•R = sum of ranks in the 
group (e.g. RA)

𝑄 𝑜𝑟 𝑇1 𝑜𝑟 𝐹𝑀 𝑜𝑟 𝐹 =
12

𝑁 × 𝑘 × 𝑘 + 1
× σ𝑅2 − 3 × 𝑁 × 𝑘 + 1

𝐹 =
12

10 × 3 × 3 + 1
× 26.52 + 212 + 12.52 − 3 × 10 × 3 + 1

𝐹 =
12

120
× 702.25 + 441 + 156.25 − 120 = 9.95



Association between 2 continuous variables
Linear relationship

Non-Parametric data



• Similar concepts as for the other non-parametric tests

•ρ (rho) is the equivalent of r and calculated in a similar way

•Spearman’s ρ is Pearson’s r applied on ranks

Non-parametric tests 
Spearman Correlation Coefficient

CO𝑉𝑅(𝑥)𝑅(𝑦)

S𝐷𝑅(𝑥)S𝐷𝑅(𝑦)
ρ  =  rs

Similarity

Variability
= =

cor_test(method = "spearman")



Exercise 5



Analysis of Qualitative data
Hayley Carr & Anne Segonds-Pichon

v2025-02



Variable

Quantitative

Continuous Discrete

Qualitative

Nominal Ordinal Binary

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork


Qualitative data

• Values taken = usually names (also nominal)
• e.g. genotypes

• Can be numbers but not numerical
• e.g. group number = numerical label but not unit of measurement

• Qualitative variable with intrinsic order in their categories = ordinal
• e.g. low/medium/high

• Particular case: qualitative variable with 2 categories: binary or dichotomous
• e.g. alive/dead or presence/absence

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork


Comparison between 2 groups
Comparison between 2 proportions

Binary outcome



Chi-square and Fisher’s tests

• Chi2 is an approximation

• Chi2 test very easy to calculate by hand but Fisher’s very hard

• Often software will not perform a Fisher’s test on tables > 2x2

• Fisher’s test more accurate than Chi2 test on small samples

• Chi2 test generally preferable on large samples

• Chi2 test assumptions:

• 2x2 table: no expected count <5

• Bigger tables: all expected > 1 and no more than 20% < 5



• In a chi-square test, the observed frequencies for two or more groups are 
compared with expected frequencies by chance

• O = Observed frequencies

• E = Expected frequencies

Chi-square test

χ2 = ෍
(𝑂 − 𝐸)2

𝐸



Example: cats and dogs.xlsx

• Cats and dogs trained to line dance
• 2 different rewards: food or affection
• Question: Is there a difference between the rewards?

• Is there a significant relationship between the 2 variables?
• Does the reward significantly affect the likelihood of dancing?

• To answer this type of question:
• Contingency table
• Fisher’s exact or Chi2 tests

• But first: how many animals do we need?
• Power analysis

Food Affection

Dance ? ?

No dance ? ?

Fisher’s exact and Chi2 tests



• Preliminary results from a pilot study: 25% of cats line-danced after 
having received affection as a reward vs. 70% after having received food
• How many cats do we need?

Exercise: Power calculation

power.prop.test()



• Preliminary results from a pilot study: 25% line-danced after having received affection as a 
reward vs. 70% after having received food. 

• How many cats do we need?

• Providing the effect size observed in the experiment is similar to the one observed in the 
pilot study, based on a significance threshold of 0.05, to achieve 80% power we will need 
19 cats per group (38 total) for a Fisher’s exact test

power.prop.test(p1= 0.25, p2= 0.7, sig.level= 0.05, power= 0.8)

Exercise: Power calculation



cats %>%

  ggplot(aes(x=Training, fill=Dance))+

  geom_bar(position="fill", colour="black")+

  scale_fill_brewer(palette = 1)+

  ylab("Fraction")

Plot cats data

read_tsv("cats.dat") -> cats

cats



Example: expected frequency of cats line dancing after 
having received food as a reward

Direct counts approach:

Expected frequency 
 = (row total)*(column total)/grand total
 = 32*32/68 = 15.1

Probability approach: The Multiplicative Rule

Probability of line dancing: 32/68 
Probability of receiving food: 32/68

Expected frequency:(32/68)*(32/68)=0.22:  22% of 68 = 15.1

How are the expected frequencies calculated?

Food Affection Total

Dance 26 6 32

No dance 6 30 36

Total 32 36 68

Food Affection

Dance 15.1 16.9

No dance 16.9 19.1

Observed frequencies

Expected frequencies

χ2 = ෍
(𝑂 − 𝑬)2

𝑬



Chi2 = (26-15.1)2/15.1 + (6-16.9)2/16.9 + (6-16.9)2 /16.9 + (30-19.1)2/19.1 = 28.4

Is 28.4 big enough for the test to be significant?

Chi2 test

Food Affection

Dance 26 6

No dance 6 30

Food Affection

Dance 15.1 16.9

No dance 16.9 19.1

Observed frequencies Expected frequencies

χ2 = ෍
(𝑂 − 𝐸)2

𝐸



χ2 = 28.4 > 3.84 so Yes!

Degree of freedom: df
df = (row-1)(col-1)=1 Critical value

Is 28.4 big enough for the test to be significant?
The old fashion way



Prepare cats data for the stats

chisq_test()

fisher_test()

cats %>%

  group_by(Training, Dance) %>%

    count() %>% 

    ungroup() %>%

    pivot_wider(names_from = Dance, values_from = n)-> cats.summary

cats.summary %>%

    select(No,Yes) %>%

    fisher_test()

# rstatix package#



Answer: Training significantly affects the likelihood of cats line dancing (p=4.8e-07). 

Chi-square and Fisher’s Exact tests

cats.summary %>%

    select(No,Yes) %>%

    fisher_test()

cats.summary %>%

    select(No,Yes) %>%

    chisq_test()

cats.summary %>%

    select(No,Yes) %>%

    chisq_test(correct = FALSE)



Chi-square and Fisher’s Exact tests

Stats on the graph

ggplot(cats, aes(x=Training, fill=Dance))+

  geom_bar(position="fill", colour="black")+

  scale_fill_brewer(palette = 1)+

  ylab("Fraction")+

  scale_y_continuous(breaks=seq(from =0, by=0.1, to=1.05), limits = c(0,1.05))+

  annotate("text", label="Fisher's Exact Test: p = 0.00000131", x=1.5, y=1.05, size=6)



Fisher’s exact and Chi2 tests 
Beyond significance

• Important things to remember:

• Qualitative data can be presented as percentages but the tests should always be run on actual counts
• Power!

• A p-value should always be interpreted in the context of the experiment
• Power!



Exercise 6



Decision trees & resources
Hayley Carr
v2024-05



Choosing a test: Flow charts



Start

Differences? How many factors?

Two or more
2 way ANOVA, 
General Linear 

(Mixed) Model, etc.

One
Same or different 

subjects?

Same

Non-Parametric
Wilcoxon paired 

test

Parametric
Paired t-test / 

repeated ANOVA

Different

Non-Parametric
Mann Whitney U 

test

Parametric T-test / ANOVACorrelation?

Parametric Pearson Correlation

Non-Parametric
Spearman Rank 

Correlation

Categories? Parametric
Chi Squared 

Fisher’s exact

Statistics Decision tree
Anne Segonds-Pichon



Start

Differences? How many factors?

Two or more
2 way ANOVA, 
General Linear 

(Mixed) Model, etc.

One Same or different 
subjects?

Same

Non-Parametric
Wilcoxon paired 

test

Parametric
Paired t-test / 

repeated ANOVA

Different

Non-Parametric
Mann Whitney U 

test

Parametric
Student t-test

ANOVA
Correlation?

Parametric Pearson Correlation

Non-Parametric
Spearman Rank 

Correlation

Categories? Parametric Chi Squared test

Difference between the 2 conditions

One factor: Sex (2 levels)

2 different samples:
Males and Females

Normality 
Homogeneity of variance:

Body length (cm)

That’s the one!

Is there a difference between males and females coyotes in the body length? 

Statistics Decision tree
Anne Segonds-Pichon



St
ar

t

Differences?
How many 

factors?

Two or more
Two-way ANOVA, 

General Linear 
(Mixed) Model, etc.

One
Same or 
different 
subjects?

Same

Parametric
Paired T 

test/repeated 
ANOVA

Non-parametric Wilcoxon paired test

Different

Parametric T-test/ANOVA

Non-parametric
Mann-Whitney U 

test
Correlation?

Parametric
Pearson 

Correlation

Non-parametric
Spearman 

Rank 
Correlation

Categories?

2x2 table
Fisher’s Exact 

test

>2x2 table
Chi Square 

test



Choosing a test: Flow charts



Choosing a test: Flow charts

https://statsandr.com/blog/what-statistical-test-should-i-do/ 

https://statsandr.com/blog/what-statistical-test-should-i-do/


https://rcompanion.org/rcompanion/a_02.html

R commander

Core R

https://www.datanovia.com/en/lessons/

https://rpkgs.datanovia.com/rstatix/Statistics resources: R

https://rcompanion.org/rcompanion/a_02.html
https://www.datanovia.com/en/lessons/anova-in-r/
https://rpkgs.datanovia.com/rstatix/


Statistics resources

https://www.nature.com/collections/qghhqm 
Not always the friendliest, but covers lots of relevant topics Hayley Carr (i.e. me!):

hayley.carr@babraham.ac.uk 

https://www.nature.com/collections/qghhqm
mailto:hayley.carr@babraham.ac.uk
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