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Experimental design
Independent versus matched design



Experimental design
Independent design

e 2 or more groups in an experiment with independent subjects

 Example: 3 groups with n=4 in the control group and n=4 in each treated group

(5522002000

N

4 different mice 4 different mice 4 different mice




Experimental design
Matched design

» Also called repeated = dependent = paired (2 groups)

* Design 1: 22 measures per animal/subject/petri dish

Example 1: before/after treatment measures Example 2: 3 time points

Time1l Time 2 Time 3

Same mouse efore  After Paired/Matched values

Difference or ratio possible Mouse 1
for each mouse

Mouse 2

Matched/Repeated values /

Ex: Difference or ratio vs. Time 1
for each mouse

Mouse 1

o)

Same mouse
Mouse 2

Mouse 3

Mouse 3

D)
P



Experimental design
Matched design

* Design 2: experiment repeated independently

Example 1: 3 independent experiments Example 2: 3 independent experiments
2 mice within each: WT and KO 3 mice within each: control and 2 treatments

Matched/Paired values

2 different mice W KO Each KO mouse is matched with a WT Ctrl Treat1l Treat2
. N2 Difference or ratio possible
Experiment 1 @ @ for each experiment Experiment 1

Matched values .
Ex: Difference or ratio vs. Time 1 Experiment 2
for each experiment

Experiment 2 3 different

mice

Experiment 3 Experiment 3

P
P




Experimental design
m@ Other design considerations:

The lack of bias-reducing measures such as randomisation and

bias

blinding can contribute to as much as 30-45% inflation of effect

sizes

* Simple randomisation or randomisation within blocks
* Example nuisance variables for blocking:
* Time or day of experiment
* Litter, cage, etc.
* Person carrying out experiment
e Sex, age, body weight, etc.
* Another related measure (e.g. starting cell numbers, level of
cytokine, or similar)
* Use random number generator, flip a coin, roll a dice

Blinding should be thought about:
 When allocating groups * When measuring outcomes
 When doing the experiment  When doing the analysis

The ARRIVE guidelines 2.0

Study design

Sample size

Inclusion and exclusion criteria
Randomisation
Blinding/Masking

Outcome measures

Statistical methods
Experimental animals

Results

LNV RWNE

https://arriveguidelines.org/arrive-guidelines
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Technical/biological replicates
Not always easy



Technical versus biological replicates

* Technical: repeated measures of the same sample = variability in the protocol
* Biological: measures of biologically distinct samples = biological variation

* Average of technical replicates = 1 biological replicate 2 |, measurement error
/N NS A
- - LI
Technical Biological \\ \l/ //

Technical & Biological
n=3



Technical versus biological replicates
Not always easy to tell the difference

* Definition of technical and biological depends on the model

 Mouse, human, plant, or other complex organism
* One value per individual organism = biological replicate

AL
ﬂ n=1 " n=3

Technical Biological



Technical versus biological replicates
Not always easy to tell the difference

 The model: mouse or other complex organism
e >1 value per individual, e.g. axon degeneration

\ \i > One measure or more

One mouse == Several segments = Several axons ms) Tens of values
per mouse per segment (per mouse)

 What to do? Not one good answer
* In this case: mouse = experiment unit, nerve segments = biological replicates, axons =
technical replicates
 But how generalisable to a wider population is this?




Technical versus biological replicates
Not always easy to tell the difference

e Cells, worms, etc. = many ‘individuals’:
* Whatis ‘n’ in cell culture experiments?

Control  Treatment

@ —= = . %

Glass slides, microarrays,
Vial of frozen cells Dishes, flasks, wells, ... lanes in gel, wells in plate,

Cells in culture
Point of Treatment Point of Measurements




Technical versus biological replicates
Not always easy to tell the difference

* Design 1: %

/ \ One value per glass slide

% ﬁ e.g. cell count
Ny

* After quantification: 6 values
e Samplesize:n=1
* noindependence between slides
* variability = pipetting/measurement error




Technical versus biological replicates
Not always easy to tell the difference

:

== §/ \% = = Everything processed

CoL e
S S o & o

* After quantification: 6 values
e Samplesize:n=1
* no independence between plates
e variability = bit better as sample split higher up in the hierarchy

* Design 2:




Technical versus biological replicates
Not always easy to tell the difference

* Design 3: Often, as good as it can get

Day 1 Day 2 Day 3

. v .

/ N\ / N\ /\
e S ==

o o o
VA SR .

e After quantification: 6 values
e Samplesize:n=3
 Whole procedure repeated 3 separate times
* 3 days are (mostly) independent
* Technical variability but at the highest hierarchical level
» 2 glass slides = paired observations



Technical versus biological replicates
Not always easy to tell the difference

 Design 4: The ideal design

person/animal/ person/animal/ person/animal/
plant 1 plant 2 plant 3

. v v

/\ /\ /\
s = =

L L L
V- . A

e After quantification: 6 values

e Samplesize:n=3
* Real biological replicates



Technical versus biological replicates

X

Never mix technical and biological replicates

Do not generalise your results beyond what you

|dentify technical and biological replicates are able to show

Make the replicates as independent as possible

Consider wider factors, e.g. rarity of samples,
cost and accuracy of measurements

How ‘good’ your biological replicates are
determines how generalisable your results are

o ‘I confidence if true biological replicates

o I confidence if single cell line



[ e
1
X

4



Experimental Design
Statistical analysis

* Think about the statistical analyses before you collect any data
* Translate the hypothesis into statistical questions

E What data will I collect? @ Will | have access to the raw data?

® Low will it be | have been told to do this
test/use that template, is that
recorded/produced? right?

‘N Do | know enough stats to et el
analyse my data? not: ask for help!




Experimental Design
Statistical analysis

T G o | 2 way ANOVA, General Linear
| Mixed) Model, etc.
< How many
Differences?
factors?
One »  Same or different subjects? I
v v
Start [+ Same Different
& &
0 0
() > ) 3
3 ® 3 ®
Pearson 3 § 3 §
Correlation? Parametric > . 3 =1
Correlation I a - a -
2 =
. N r
Nonparametric [ Spea man.Rank
Correlation 3 - s = 2
0 a5 ;’,! 3
& 3 8 4 2
222 8 =~ ||z =
) Q. - 0w 5 > v o
5 :;{ - = > - §
Categories? Parametric || Chi Square test o2 2. e 2
S 3 > =




Experimental Design
Exploratory data analysis (EDA)

Purpose of EDA = discovery

Less confidence in results so follow up with confirmatory tests

Confirmatory approaches (hypothesis testing) provide stronger statistical evidence

EDA # “p-hacking” but could be if reported as if confirmatory

Be clear about approach taken — harm comes from misrepresenting processes






Experimental Design
Common sense

v/

Design your experiment to be analysable
Imagine how your results will look

Imagine what could go wrong at each step
Accept limitations and account for them (be

prepared for follow up experiments, if
required)

X

The gathering of results or carrying out of a
procedure is not the end goal

Don’t get fixated on being able to perform a
cool technique or experimental protocol

Don’t overcomplicate

Don’t get overwhelmed (ask for help)

Will these results address your hypothesis?
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Power analysis

* Power analysis is about estimating the appropriate sample size.

m [ Power Analysis ]

Experimental Design

Data
Collection/Storage




Sample size

* Too big: waste of resources

* Too small: may miss the effect (p>0.05) + waste of resources
* @Grants: justification of sample size

* Publications: reviewers ask for power calculation evidence

* Home office (UK): the 3 Rs: Replacement, Reduction and Refinement

 To estimate an appropriate sample size, we need to do a power analysis

Methods which Methods which Methods which

avoid or replace minimise the minimise suffering

the use of animals number of animals and improve animal
used per experiment welfare

Replacement J Reduction Refinement



Statistical power

* In a nutshell: the bigger the experiment (bigger sample size), the bigger the
power (more likely to pick up a difference)
* Power = probability of detecting an effect, given that the effect is really there
* =the probability that a statistical test will reject a false null hypothesis (HO)

* To really understand power, we first need to understand some statistical

concepts...




Hypothesis testing

* The null hypothesis: Hy = no effect

* The aim of a statistical test is to reject or not H,

Statistical decision True state of H,
H, True (no effect) H, False (effect)
Reject H, Type | error a dov | Correct 00
False Positive True Positive ?)
Do not reject H, Correct GO [| Type Il error B 50 |
True Negative F) [False Negative ‘\

Properly
powered studies
minimise this

(siqk--)‘{e.s- -
I'm (TILL VR o ot how: i
/ \ birthed e . 1\00\2’\ e e
[F=0.02] X BoTH of Yov- N meat .

\
oL
3N ““0’“'

AORFUATRL P,
fample | (PaPu\Ahon)

po P“\M' ion | https://github.com/allisonhorst/stats-illustrationsttother-stats-artwork
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What does Power look like?

0.030
1

critical value

0025

0.020

0010

Probability density
0.015

0005

0.000




What does Power look like? Null and alternative hypotheses

Control

/

0.000 0005 0010 0.015 0.020 0025 00

| Treatment

critical value

Probability density

* Probability that the observed result occurs if H, is true
* H,: Null hypothesis = absence of effect
* H;: Alternative hypothesis = presence of an effect
e Statistics is all about rejecting the Null or not.



What does Power look like? Type | error (a)

8 N
o critical value
9 :
S e
o 7y
%)
2 gl H, A H,
o RSy
> @ ¢t ot
-~ o
: o
Ko AL
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S " power
o e o
o 2
3
o
§ o
=
60 80 100 120 140 160 180

* Type | error is the failure to reject a true H,
* Claiming an effect which is not there.
* o : probability of making a Type | error
* o :the significance level, usually set at 0.05 or 5%




What does Power look like? Type | error (a) and the p-value

g critical value
5 B
7
C 8
() =
©
£ &
E
© e
o 3
O
o g
:
X
* p-value: probability that the observed statistic ¢ Statistical significance: comparison between a
occurred by chance alone (=0.05) and the p-value
e probability that a difference as big as the * p-value < 0.05: there is a significant
one observed could be found even if there difference © (reject H,)
is no effect. * p-value > 0.05: there is no significant

difference ® (fail to reject H,)



What does Power look like? Type Il error (B) and Power

8
° critical value
5 B
B
c 8
() =
©
2 3
3
S B Area=1
O -1 —
is g Power=1-
:
60 80 100 1;0 140 160 180
X
* Type ll error (B) is the failure to reject a false * Power: Probability of detecting an effect which is
Ho really there.
* Missing an effect which is really there = Probability of rejecting a false H,
* [ :probability of making a Type Il error e Direct relationship between Power and Type

Il error: Power =1-



What does Power look like? Power = 80%

General convention: 80% but could be more

Means a true difference will be missed 20% of the time
* If power = 0.8 then B =1- power =0.2 (20%)

Jacob Cohen (1962):

* Type |l errors are 4x more serious than Type Il errors:

* 0.05*4=0.2

Compromise between power and sample size, e.g. for 2
group comparisons:
* 90% power = +30% sample size
* 95% power = +60% sample size

Probability density

0.000 0005 0010 0015 0.020 0025 0.030

critical value




The critical value

Quantitative variable

Small difference

70=
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Samplel Sample 2

Quantitative variable
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Samplel Sample 2

Quantitative variable
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Samplel Sample 2

Big difference

A

Not significant: p>0.05

Significant: p<0.05

Probability density
0.000 0005 0010 0015 0020 0025 0.030

critical value

Critical value = size of difference + sample size + significance level

\ 4



The critical value: size of difference + sample size + significance

Example with the t-test

| critical value

Probability density
0.000 0005 0010 0015 0.020 0025 0.030

* In hypothesis testing:
 critical value is compared to the test

Degrees of freedom

Significance level

£fF | o2 .10 G.DD .02 0,01 0.001
1 30777 | 63138 127062 318205 | 63.6567 | 636.6192
2 18856 | 29200 43027 | 6566|9928 | 315991
3 16377 ) 235 3180 4.5407 58405 | 125240
4 15232 2ams|  27ved | ames | d60m B.6102
5 14759 | 20150 25706 23649 | 4037 |  6.8688
6 14395 | 19432 24489 | 31477 3.7074 | 5.9588
M7 14145 | 1.8546 L3526 L5380 3.4595 54073
) 1.3568 | 1.8545 2. 3060 28965 3.3554 50413
a 3330 | 18331 3622 |  2EM4 3.2498 | 47809
1w | 13 18135 zzE1| 2763 3.1693 |  4.5369
1 | 13634 [ N\L7959| e zmm 31055 | 44370
12 1.3562 :I.M 11788 L6810 30545 43178
(13 | 13s02] 17709 2aep4| 26503 3.0123 | 4%
(aa D) 13850 178:13| C 21008 ) “Fass 29765 | 41405
S —— |
15 | 1.3406| 17531 21314 | 26035 29467 | 40728

~ Difference
T Distribution

Critical
Value

Critical
Value

0.95 Diff “big enough”
0.025 0.025
Rejection Noarejection Rejection
Regm Reg’on Reg,on
N il

\ 0 )

t=-2.1448 Y t=2.1448

Example: 2-tailed t-test with n=15 (df=14)

statistic to determine significance

 Example of test statistic: t-value

|II

Difference “too smal

* |f test statistic > critical value: statistical
significance and rejection of the null
hypothesis

 Example: t-value > critical t-value



To recap:

* The null hypothesis: Hy = no effect

* The aim of a statistical test is to reject or not H,

Statistical decision True state of H,

H, True (no effect) H, False (effect)
Correct 00
True Positive F)

Do not reject H, Correct A A

Type Il error B
True Negative F) False Negative

Reject H, Type | error a
False Positive

(Siqh...)‘{ﬁ-
/ I'mh f_TLLL fure
\ birthed
[? =0.02] A« BOTH of ou-
o
= .2\(%'5\;5“ Tor

e SLECRPROM, S
Snmpu | (PaFu\qﬁon)

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork
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Power analysis

The power analysis depends on the relationship between 6 variables:

* the significance level (5%)
* the desired power of the experiment (80%)

* the alternative hypothesis (i.e. one or two-sided test)

* the difference of biological interest

- Effect size
* the variability in the data (standard deviation)

*the sample size



Power analysis

The power analysis depends on the relationship between 6 variables:

* the significance level (5%)
* the desired power of the experiment (80%)

* the alternative hypothesis (i.e. one or two-sided test)



The alternative hypothesis: what is it?

. One-tailed or two-tailed test? One-sided or two-sided tests?

Two-Tailed Versus One-Tailed Hyphothesis Tests

Figure A: Figure B:
Two-Tailed Test One-Tailed Test

(Left-Tailed Test) A4 happy oz

will eat mere

 |sthe question:

One-tailed hypothesis

Mood affects the
c?pp:-m‘e oFf‘ dogs

Two-tailed hypothesis

 Isthe there a difference? - Two-tailed
 Isitlarger than or smaller than? - One-tailed

 Canrarely justify the use of a one-tailed test

Two times easier to reach significance with one-tailed than two-tailed = suspicious

reviewer!



Power analysis

The power analysis depends on the relationship between 6 variables:

* the significance level (5%)
* the desired power of the experiment (80%)

* the alternative hypothesis (i.e. one or two-sided test)

* the difference of biological interest

- Effect size
* the variability in the data (standard deviation)




The difference of biological interest

 Determined scientifically (not statistically)

* Minimum meaningful effect of biological relevance
(Minimum Effect of Interest, MEI)

* How to determine it?
* Previous research, pilot study

The variability

* We need to have an idea of the standard deviation before we
start the experiment

* How to determine it?
e Data from previous research on WT, control or baseline

—

Effect size

Combination of
absolute effect and
variability



The effect size: how is it calculated?

Depends on the type of difference and the data
Easy example: comparison between 2 means

Effect Size =

[Mean of experimental group] — [Mean of control group]

Absolute difference

Standard Deviation 4-\
Variability

Jacob Cohen defined small, medium and large effects for different tests —

but not recommended

Relevant

Effect Size Threshold

Test effect size Small Medium Large
t-test for means d 02 0.5 0.8
F-test for ANCWA 0.1 0.25 04
t-test for correlation r 0.1 0.3 05
Chi-square W 0.1 0.3 05
2 proportions h 0.2 0.5 0.8




The effect size: how is it calculated?
The absolute difference

* The bigger the effect (the absolute difference), the bigger the power
= the bigger the probability of picking up the difference

Absolute difference

Effect Size = [Mean of experimental group] — [Mean of conirol group]

Standard Deviation

:1)’ Power
‘ 0.53
d=15 \0.83

critical value

o
T

Probability density



http://rpsychologist.com/d3/cohend/

The effect size: how is it calculated?
The standard deviation

The bigger the variability of the data, the smaller the power

Effect Size = [Mean of experimental group] — [Mean of control group]

critical value

0.030
L

critical value

0025

0.020

0010

Probability density
0.015

0005

0.000
L




Power analysis

The power analysis depends on the relationship between 6 variables:

* the significance level (5%)
* the desired power of the experiment (80%)

* the alternative hypothesis (i.e. one or two-sided test)

* the difference of biological interest

- Effect size
* the variability in the data (standard deviation)

*the sample size



The sample size

* Most of the time, the output of a power calculation

* Inreality it is difficult to reduce the variability in data, or the contrast
between means
* most effective way of improving power:
* increase the sample size

* The bigger the sample, the bigger the power
* but how does it actually work?




Samples and population

* We want to know about whole population
* All people, all patients, all mice, all cells...

* Not possible to measure whole population

* So take a representative sample

* Make inferences about the population

* Larger samples more likely to be representative of
the population



‘Infinite’ number of experiments Th e Sa m p I e S i ze

Continuous variable
[

Samples means = X

Population

Example with 10
experiments

Sample means

Sample means

n=3

®
© €0 &u

Sample

Sample

Usually only do one
experiment



probability

probability

The sample size

®
0 2]
O e
£ % E (o ﬁrﬁ
[} 1 [} -1 =
5 5 ®
»n (%) n
1 ® 1
Probability distfibution under H,: small samples Probability distribution under Hy: big samples
0.16 0.06
i |
0.14 4 I 0.05 I
0.12 4 | . I
01 i Observed result mustbe in || Observed result must be in
0.08 4 Observed result must be in 1 Observed result must be in CO nt rOI this range to be 1 this range to be
this range to be i this range to be significant | significant
0.06 1 significant 1 significant = 0.02 4 1
0.04 4 | =% : | 1 | ]
0.02 1 0.01 -
D = ﬂ T T T T T T
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m N I ;
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014 1 |
0084 . . Treatment True value = 40
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0.02 - 0.01 90% of the time
0- i 04 . . . . . . . . .
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probability

probability

The sample size

Probability distribution under Hy: small samples Probability distribution under Hy: big samples

0.16 0.06

0.14 4 | A nE ]

0.12 1

0.1 4 CO nt ro I Observed result must be in Observed result must be in
0.08 4 Observed result must be in Observed result must be this range to be this range to be

) this range to be this range to be . significant significant

0.06 4 significant significant = 0.02 - \ \

0.04 = 001 47 ) f \
0.02 4

0 - 0 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100 a 10 20 30 40 50 60 70 80 90 100
X X

o L
o124 True value = 40 ‘ N 0.05 1 !

0.1 4 i = nnad
0.08 lrue value = 40

Significant results:
0.06 |
0.04 21% of the time Treatment gnificant results:
0.02 4 0.01 90% of the time
B 0

0 10 20 30 40 50 60 70 80 90 100
X

d=

n=

n=3 0.53

n="rt 0.84
8 14




The sample size: the bigger the better?

|t takes huge samples to detect tiny differences but tiny samples to detect huge differences

90 -

80 - E *kk

*  What if the tiny difference is meaningless?
e Beware of overpower
* Nothing wrong with the stats: it is all about
interpretation of the results of the test

70 J

30 4
e Remember the important first step of power analysis:

*  What s the effect size of biological interest? —L 4 _1

10 -

n=1178238




Power analysis
Typical question

What sample size do | need to have a 80% probability (power) to detect this particular effect
(difference and standard deviation) at a 5% significance level using a 2-sided test?

Difference l Standard deviation T

el
\ \

Significance levell Power 2-sided test (T)



Power analysis

* Fix any five of the variables, a mathematical relationship is used to estimate the sixth

Difference of biological interest

+ Variability in the data (standard deviation)
+ Desired power of the experiment (80%)

+ Significance level (5%)

+ Alternative hypothesis (i.e. one or two-sided test)

Appropriate sample size



Power analysis

Use R Help to find out how to use the

e Good news: functions
. ° D H
there are packages that can do the power analysis €. ‘power.prop.test in
the console

for you, providing you have some prior knowledge
of the key parameters!

e R power .prop. test (n=NULL, pl=NULL, p2=NULL,
\\\\\\\“‘-\\\\\\\$ sig.level=NULL, power=NULL,
G*Power alternative=c ("two.sided", "one.sided"))
power. t.test (n=NULL, delta=NULL, sd=1, sig.level=NULL,

power=NULL,
type=c ("two.sample", "one.sample", "paired"),
alternative=c ("two.sided", "one.sided"))



Power Analysis
Comparing 2 proportions (Fisher’s exact test)

Exercise:
e Scientists have come up with a solution that may reduce the number of lions being shot by farmers in Africa:

Painting eyes on cows’ bottoms.

* Early trials suggest that lions are less likely to attack livestock when they think they’re being watched

Fewer livestock attacks could help farmers and lions co-exist more peacefully.

* Pilot study over 6 weeks:

* Tasks:

3 out of 39 unpainted cows were killed by lions, none of the 23 painted cows from the same herd were
killed.

Do you think the observed effect is meaningful to the extent
that such a ‘treatment’ should be applied?
Consider ethics, economics, conservation ...
Run a power calculation to find out how many cows should be
included in the study.
* Cluel: power.prop.test()
* Clue 2: exactly one of the parameters must be passed as . o .
i ] http://www.sciencealert.com/scientists-are-painting-
NULL, and that parameter is determined by the others eves-on-cows-butts-to-stop-lions-getting-shot



http://www.sciencealert.com/scientists-are-painting-eyes-on-cows-butts-to-stop-lions-getting-shot
http://www.sciencealert.com/scientists-are-painting-eyes-on-cows-butts-to-stop-lions-getting-shot

Power Analysis
Comparing 2 proportions

Exercise 1: Answer

* Pilot study over 6 weeks:
e 3 out of 39 unpainted cows were killed by lions, none of the 23 painted cows from the same herd were killed.

( Two-sample comparison of proportions power ca'lcu'lat‘ih

power.prop.test (n=NULL,
— n = 96.92364
pl=3/39, pl = 0.07692308
p2=0, . Teve] = 0.05
, sig.level = 0.
sig.level=0.05, power = 0.8
power=O 8 alternative = two.sided
° 4
alternative="two.sided") NOTE: n 1is number in ¥each® group j

Providing the preliminary results are to be trusted, to be able to pick up such a difference
between the 2 groups, with a power of 80% and a significance level of 5%, we will need at
least 97 cows in each group.



Article | Open Access | Published: 07 August 2020

Artificial eyespots on cattle reduce predation by large
carnivores

Cameron Radford, John Weldon McNutt, Tracey Rogers, Ben Maslen & Neil Jordan

Communications Biology 3, Article number: 430 (2020) | Cite this article

49k Accesses | 1 Citations | 2040 Altmetric | Metrics

Abstract

Eyespots evolved independently in many taxa as anti-predator signals. There remains debate
regarding whether eyespots function as diversion targets, predator mimics, conspicuous
startling signals, deceptive detection, or a combination. Although eye patterns and gaze
modify human behaviour, anti-predator eyespots do not occur naturally in contemporary
mammals. Here we show that eyespots painted on cattle rumps were associated with reduced
attacks by ambush carnivores (lions and leopards). Cattle painted with eyespots were
significantly more likely to survive than were cross-marked and unmarked cattle, despite all
treatment groups being similarly exposed to predation risk. While higher survival of eyespot-
painted cattle supports the detection hypothesis, increased survival of cross-marked cattle
suggests an effect of novel and conspicuous marks more generally. To our knowledge, this is
the first time eyespots have been shown to deter large mammalian predators. Applying
artificial marks to high-value livestock may therefore represent a cost-effective tool to reduce

livestock predation.

a artificial eyespots (bicolour as pictured, or white/yellow inner only, or black outer only, for maximum contrast depending on cattle coat colour). b cross-

marked procedural control (black or white depending on coat colour for contrast). ¢ unmarked control. Images provided by C.R.

https://www.nature.com/articles/s42003-020-01156-0.pdf




Power Analysis

Comparing 2 means (t-test)

Exercise:
* We want to know whether male and female coyotes differ in size

* No data from a pilot study but we have found some information in the literature:
* |n a study run in similar conditions as in the one we intend to run, male coyotes were
found to measure: 92cm +/- 7cm (SD)
* We expect a 5% difference between sexes
= smallest biologically meaningful difference

* Task:
* Run a power calculation to find out how many
coyotes should be included in the study
* Usingpower.t.test ()




Power Analysis
Comparing 2 means (t-test)

Independent t-test power.t.test (
n = NULL, delta = NULL, sd = NULL,

. . . sig.level = NULL, power = NULL,
A priori Power analysis

type = "two.sample" or "one.sample"
or "paired",
Example case: alternative = "two.sided" or
"one.sided")
From a similar study, male coyotes were 1

found to measure:

.t.test (delt 92-87.4, sd
92cm+/- 7cm (SD) power est (delta s

= = 7
sig.level = 0.05, power = 0.8)

’

You expect a 5% difference between sexes l
with similar variability in the female Two-sample t test power calculation

sample n = 37.33624

delta = 4.6

sd =7

sig. level = 0.05

. power = 0.8
You need a sample size of n=76 (2*38) alternative = two. sided

NOTE: n is number in *each® group



Unequal sample sizes

No simple trade-off — if need 2 groups of 30 = 20 and 40 = decreased power
 Unbalanced design = bigger total sample

Solution 1 (ol/d school):
Step 1: power calculation for equal sample size
Step 2: adjustment

Where:
N =total sample
size in unbalanced
design
n = total sample
size in balanced
design
n, = group 1 size
n, = group 2 size
k = ratio n,/n,

N

1,

¥,

2n(1+k)’

Ak
N

T (A+k)
JeN

> T A1k

Cow example:
* Balanced design: n =97
* [f unpainted group is 2 times bigger than painted (k=0.5):

N_2><97><(1+O.5)2
B 4% 0.5

Unpainted butts (n,)=146 Painted butts (n,)=73

= 218.25 = 219

e Balanced design: n=2*97 = 194
* Unbalanced design: n=73+146 = 219




Unequal sample sizes

e Solution 2: Use R Also consider anything else that
might impact final numbers, e.g. if
likely to lose some samples during

* InpracticewithR, # MESS package #

* Comparing 2 proportions with unequal n: experiment
power prop test()
« Comparing 2 means with unequal n: Different methods give slightly
power t test () different sample sizes:
- * Using adjustment
power prop test (n=NULL, * Unpainted (n,) = 146
pl=3/39, p2=0, sig.level=0.05, * Painted (n,) =73
power =0.8, ratio = 0.5) * Total sample =219
Two-sample comparison of proportions power calculation with unequal sample sizes ©  USING R:
n = 160.01567, 80.00783 * Unpainted (nl) =161
- ained (n) = 1

power = 0.8 * Total sample =242

alternative = two.sided

NOTE: n is wvector of number in each group



Non-parametric tests

Do not assume data come from a Gaussian/normal distribution

* Based on ranking values from low to high
* Almost always less powerful

Proper power calculations need to specify which kind of distribution we are
dealing with — not easy

Non-parametric usually do not require more than 15% additional subjects
compared to parametric

Crude rule of thumb:
 Compute sample size required for a parametric test and add 15%



What happens if we ighore the power of a test?

* Misinterpretation of the results

* Never ever interpret p-values without context!

 Significant p-value (<0.05): but what is the difference?
 >=smallest meaningful difference: exciting effect
* < smallest meaningful difference: essentially a false positive/type 1 error
* Too big sample, overpowered — difference has no biological relevance

* Not significant p-value (>0.05): but how big was the sample?
* Big enough = enough power: no effect
* Not big enough = underpowered: potentially a false negative/type 2 error
* Too small sample — potentially miss a meaningful difference



Exercise 1
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Data Collection/Storage




Quantitative Qualitative

Continuous Discrete Binary
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Quantitative data

They take numerical values (units of measurement)

(ONTINUOUS DISCRETE
Discrete: obtained by counting MR ey G o
 Example: number of students in a class ‘@'
 values vary by finite specific steps
Continuous: obtained by measuring §!
* Example: height of students in a class | am 37 rau i

| WEIGH 34.1 grams Y opore!
e any values — can have decimal places

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork

They can be described by a series of parameters:
 Mean, variance, standard deviation, standard error and confidence interval


https://github.com/allisonhorst/stats-illustrations#other-stats-artwork

Measures of central tendency
Mode and Median

* Mode: most commonly occurring value in a distribution

1

)

’Pf |

 Median: value exactly in the middle of an ordered set of numbers

Example 1: 18 27 34 52 54 59 EE- 82 85 87 91 93 100, Median = 68
Example 2: 18 27 27 34 52 52 59 67 63 63 85 85 85 90, Median = 60

f

Lol
rﬂw T

-10 0 30



Measures of central tendency
Mean

Definition: average of all values in a column

Example: meanof: 1, 2,3,3 and 4 = (1+2+3+3+4)/5=2.6

The mean is a model because it summaries the data

How do we know that it is an accurate model?

Continuous variable

e Difference between the real data and the model created




Measures of dispersion

* Calculate the magnitude of the differences
between each data and the mean

4 o

* Total error = sum of differences
=2(x; —x)=-16-06+04+04+1.4=0 3 olo

No errors: positive and negative cancel each other out °'4f 2

-0.6

o< >

Continuous variable
v

-1.6

* To solve that problem we square the errors

- Sum of squared errors (SS) 1 Yo




Sum of Squared errors (SS)

* Sum of squared errors = (§S) = X (x; — x)?
=(-1.6) 2 + (-0.6)2 + (0.4)2 +(0.4)2 + (1.4)2
=5.20

* Good measure of the accuracy of the model

* Depends on amount of data: larger sample = larger SS

e Account for number of observations (N) by dividing SS by N-1
(degrees of freedom)

— the variance (S?) = SS/N-1

Continuous variable

N
[

w
1

N
1




Degrees of freedom

SS % (x; — ()2
N—1 (N=-1)

To calculate the variance, we need the mean

variance (s?) =

If we know the mean, we do not need all the values in the sample to
calculate the variance ﬁ

[1+2+3+3]+4=2.6

Example: Sample: n =5, Mean (x) =
© 2.6x5—(1+2+3+3) =

Once we know the mean, we only need to know the first 4 numbers (N-1)
and we can calculate the last number



Degrees of freedom

, (s?) — SS I (x—[(x)
variance \ s — N — 1 — m

* The last (nt") value in the sample is no longer independent, is not free.

n — 1 degrees of freedom

* Because we know the mean, the variance does not depend on all of the
values of the sample, only on n-1 of the values



Variance and standard deviation

. SS T (x;—x)* 5.20
e variance (s?) = — === =—=13

* Problem with variance: in squared units

» Take the square root to get the same unit as the original measure
— the standard deviation

S.D. =V(SS/N-1) =V(s?) =s = /1.3 = 1.14

e SD = a measure of how well the mean represents the data.

@ +
- [

w 3
@ IS
—— P>
0«
)
o




Continuous variable

Standard deviation

$.D.=0.5

Small S.D.

data close to the mean:

good fit of the data

114

Continuous variable

S.D.=3.5

Large S.D.

data distant from the mean:
not an accurate representation



Standard Deviation (SD) or Standard Error Mean (SEM)?

Continuous variable

10+

Continuous variable

10+

i

SEM

Smaller error bars




Standard Deviation

* The SD quantifies how much the values vary from one another
—> scatter or spread
* Does not change predictably as you acquire more data

Continuous variable

10+

|C

B

Continuous variable

10+

s °

) Ppe
<I) oQ0 ¢ T)Q °
(

00 O &
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Standard Error of the Mean

SD

* The SEM quantifies how accurately we
know the true mean of the population

* Takes into account: SD + sample size
* Make inferences about the population

bl
ariable

* The SEM gets smaller as the sample gets : | Rees
larger N 5|

* Mean of a large sample likely closer to
true mean than mean of a small sample




Continuous variable

Population

Theoretical ‘infinite’ number of
experiments

Samples means = X

Sample means

Sample means

The SEM and the sample size

n=3
®

()
® &

109

®

n=30

t-

Sample

Continuous variable

o
[
o

Sample

101

o
[

[ [}

o pe
o o o 00

00 © 00 §i9 0O
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[ X X J




SD or SEM ? Whichever you choose
make sure to report it

. |
* If we want to show the variation among values: accurately!

- Report the SD

* If we want to show how precisely we have
determined the population mean:

Mean + SEM

- Report the SEM

* Preferably show all data points and the SEM

B C 0 €

https://lymielynn.medium.com/a-little-closer-to-cooks-distance-e8cc923a3250

— Both variation and precision


https://lymielynn.medium.com/a-little-closer-to-cooks-distance-e8cc923a3250

Confidence interval

e Range of values that we can be 95% confident contains the true mean of
the population

* Limits of 95% Cl: [Mean - 1.96*SEM; Mean + 1.96*SEM] (SEM = SD/VN)
* On average 19/20 experiments include the population mean

Proportion of values

-1.96*SEM  Mean +1.96*SEM *

N/

On either side of the mean

ttttt ://statisticsbyjim.com/hypothesis-testing/confidence-interval/
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To recap

* The Standard Deviation is descriptive
* Just about the sample

e The Standard Error and the Confidence Interval are
inferential
e Sample = General Population

Standard Deviation(SD) (Descriptive) Standard Error(SE) (Inferential) tcti
Q'swina po\;ulation: Is this "norm.’af“?l Q's between p&)ulatioa Are they “different"? Stat I St I Ca | teStS
. : j; are also
(7] AL 0 .
' o0 (Y" w '~ P SD ° °
9 30 SD = Z 9 - SE= — mferentlal
> * (n- 1) > o \/ﬁ




Data Collection/Storage




Quantitative data: Scatterplot

® -~ Control
-o- [reated

10000

8000 -

Variable

2000 -

G000 -

4000 -

-~ Control
® Treated

0 10 20 30

Minutes



2.0

i
ERNE

0.0

Quantitative data: Scatterplot/stripchart
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control Conda, Cond B Condc condD

ES.H3K4me3 ES.H3K27me3

Small sample Big sample



Length (cm)

110+

100+

90+

80+

70

60

Coyote

Median

Smallest data value
> lower cut off

Quantitative data: Boxplot

Maximum
/

«— Upper Quartile (Q3) 75" percentile

‘Normal’ outliers

Male

Ilnterquartile Range (IQR) 1R
\ Q1 Q3 v
Lower Quartile (Q1) 25% percentile Q3-3xIQR Q1 -15xI0R Q3+15xIQR  Q3+3xIQR
| ! | I I I
........ o= Cut off = Q1 — 1.5*IQR Median
. —4g -3¢ —20 -1o 0o lo 20 30 40
Outlier -2.6980 -0.67450 0.67450 26980
Fenznale
24.65% 24.65%
-40 -3¢ -20 -lo Oo 1o 20 30 4g

https://www.researchgate.net/publication/328818609_Outcomes_and_features_of_the_inspection_of_receiver_tubes_ITR_system_for_improved_OM_in_parabolic_trough_plants



Quantitative data: Boxplot or Beanplot (aka Violinplot)

Scatterplot shows individual data

A bean= a ‘batch’ of data
boxplot beanplot /

|
o
- -ul_-\

2
2
(- | G

d

1 3 3 Bimodal Uniform Normal
Distributions

Data density mirrored by the shape of the polygon



Quantitative data:
Boxplot and Violinplot and Scatterplot
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Frequency

Quantitative data: Histogram

Lengths of Raven eggs (from Ratcliff, 1993)

—

1

N

11

i
Length (mm)

Big sample

Fre:
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10

Male

12

10

ji =

Female

.
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T T T T T T T 1
70 75 80 8 9 95 100 105



Quantitative data: Histogram (distribution)

Log Normal Distribution Exponential Distribution
- 8 -
g g
g £ 5
& 1 8 4
(=]
T
20
Poisson Distribution _ Bimodal Distribution
§ —
& g
s 21 5
5 § 8
s g =
o _8_ _ E
2 - 8
o [=]




Data exploration # plotting data

are your
Summary statistics
hiding something

in’reresﬁng?

besed | ® (®

https://github.com/allisonhorst/stats-illustrationst#fother-stats-artwork
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Plotting is not inherently the same thing as exploring

* One experiment: change in the variable of interest between CondA to CondB.
+*Data plotted as a bar chart.

- M

60 - °
100+

504

°
40 - 80~ $
o0 ®
30+ 60' _!
40- o0 8.8
20 - oo
104 204 e0,y®

e®e08e?
0

CondA CondB \ CondA CondB /




Plotting is not inherently the same thing as exploring

* Five experiments: change in the variable of interest between 3 treatments and a

control.
+*»* Data plotted as a bar chart.

1207 Comparisons: p=0.001
Treatments vs. Control

1407

100 1204

1001 ;e
801 y

801

60

Value
Value

60
40 40

201
201

T
Control Treatmentl Treatment2 Treatment3




Plotting is not inherently the same thing as exploring

* Five experiments: change in the variable of interest between 3 treatments and a

control.

+*»* Data plotted as a bar chart.

Standardised values

-100
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AN
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o
1

(2]
o
1
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Treatl

Treat2

I
Treat3 /

Value

1407
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60 1
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201

T
Control Treatmentl Treatment2 Treatment3



Plotting is not inherently the same thing as exploring

Four experiments: Before-After treatment effect on a variable of interest.

Hypothesis: Applying a treatment will decrease the levels of the variable of interest.

s Data plotted as a bar chart. / \
1000 -

14001

500 -

12004

1000 A

8001
-500 4

6001

-1000

-1500 T -
Difference

4004

2001

]
Before After



Data exploration # plotting data

are your
Summary statistics
hiding something

in’reresﬁng?

besed | ® (®

https://github.com/allisonhorst/stats-illustrationst#fother-stats-artwork



https://github.com/allisonhorst/stats-illustrations#other-stats-artwork

(3

Babraham
Institute

Key concepts and Assumptions

Analysis of Quantitative data
Choice of a statistical test

Hayley Carr & Anne Segonds-Pichon
v2024-05

Babraham ; )
Bioinformatics



The null hypothesis and error types

The null hypothesis (H,): H, = no effect

The aim of a statistical test is to reject or
not H,

High specificity = low False Positives =
low Type | error

High sensitivity = low False Negatives =
low Type Il error

(sigh--) YeS.
/ I'm (Tl Sure
\ birthed
[? =0.0 2] A~ BOTH of yov-
o
.S‘A?g‘\'jgg

% g R W 2 o
o N T~
A RL AP IS, - =
fample |

— LI
(PoFu\A‘HN\) ﬂﬁmy\zz

Statistical decision

True state of H,

H, true (no effect)

H, false (effect)

Reject H,

Type | error a
False positive

Correct
True positive

Do not reject H,

Correct
True negative

Type Il error B
False negative

\)o?ulﬂ—ion 1

lasgiay Jumpisd population 2

https://github.com/allisonhorst/stats-illustrations#other-stats-artwork
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== Statistical inference == @RI TELT

Difference

Determined
scientifically

Is it meaningful? s it real?

Statistical test Uy,

Difference Variation Sample size

TABLE B: +-DISTRIBUTION CRITICAL VALUES

Tail probability p

25 a0 15 10 {05 025 02 o1 005 0025 001 .00DS

Woo ~l o n g oo | B

1000 1376 1963 3.078 6314 1271 1589 3182 63466 1273 3183 6366
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Signal-to-noise ratio

Stats are all about understanding Sz oal et
and controlling variation

Difference Variation Sample size
The ratio of signal to noise ‘ : /
determines the significance Difference (signal)

Variation (noise)

If the noise (interindividual

Signal variation) is low then the signal Signal It the noise is large the same

signal will not be detected

. I []
is detectable N0|5e — no statistical significance

—> statistical significance

Noise



Choice of a statistical test

There are many statistical tests. Which one we use depends on:

e What we want to do

 The questions asked
* Correct statistical test to answer our questions

e What sort of data we have

 The type and behaviour
* Correct statistical family

e There are 2 families of statistical tests:

* Parametric tests with 4 assumptions to be met
* Non-parametric tests with no or few assumptions and/or for
qualitative data



Assumptions of Parametric Data
What sort of data we have

* All parametric tests have 4 basic assumptions that must be met for the
test to be accurate.

First assumption: Normality

* Normal shape, bell shape, Gaussian shape

Central tendency




Assumptions of Parametric Data
What sort of data we have

* Frequent departures from normality:

* Skewness: lack of symmetry of a
distribution

* Kurtosis: measure of the degree of

‘oeakedness’

e Same variance and same skew
but differ markedly in kurtosis

Skewness < 0

(a) Negatively skewed

Frequency

Mode

PARANORMAL DISTRIBUTION

Skewness =0 Skewness >0

(b) Normal (no skew) (c) Positively skewed

Mean
Meadian
Mode

Negative direction

More peaked
distribution:
kurtosis >0

The normal curve Positive direction
represents a perfectly
symmetrical distribution

Leptokurtic

Flatter
distribution:
F'Iatykurtic ku rtOS|S < 0

Mormal

Kurtosis. From Dorland's, 2000




Assumptions of Parametric Data
What sort of data we have

Second assumption: Homoscedasticity (Homogeneity in variance)

* The variance should not change systematically throughout the data

Third assumption: Interval data (linearity)

* The distance between points of the scale should be equal at all parts along the
scale

Fourth assumption: Independence

* Data from different subjects are independent

* Each data point in the sample is independent from all the others = Values
corresponding to one subject do not influence the values corresponding to

another subject

* Important in repeated measures experiments



Non-parametric tests

General principle: original data are transformed into
ranks

Not meeting the assumptions for parametric tests is
not enough to switch to a non-parametric approach

Data exploration is key:

e Qutliers?

* Possible transformation?

e Parametric with corrections?

If outcome is a rank or a score with limited possible
values: often non-parametric approach

Number of values

130

1201
1104
100; 0::°o ° ::..o.
oof edi:ff wF
gdesds o2
801 °® :o
70 *
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A B

Frequency distribution
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Start

Choice of a statistical test

Two-way ANOVA,

— Two or more —| €=zl Blpleels
(Mixed) Model, etc.

Paired T
Parametric test/repeated
— Differences? — WY =107 ANOVA
factors?
' — Same
Non-parametric Wilcoxon paired test
Same or
— One — different —
subjects?
Parametric T-test/ANOVA
Parametric — Pearso.n —  Different
Correlation :
— Correlation? Non-parametric UERIUEAS
Spearman test
Non-parametric — Rank
Correlation
%2 table Fisher’s Exact
test
— Categories?
>2x2 table Sl SR

test



Choice of a statistical test

Are the mice in group A

heavier than those in group B? Two-way ANOVA,
— Two or more — | €=hEiel N AEEl e
(Mixed) Model, etc.
Paired T
Parametric  — LSS/l
. How man
—{ Differences? |— factors?y — ANOVA
: - Same
Non-parametric —\W/sepdelal s Ti=le hi=tye
Same or
= One —  different -
subjects?
i) Parametric T-test/ANOVA
— . Pearson .
O - Parametric — Correlation — Different .
a — Correlation? Non-parametric — e alianEy
Spearman test
Non-parametric — Rank
Correlation
%2 table Fisher’s Exact
test
— Categories?
>2x2 table Sl SR

test
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Comparison between 2 groups
Student’s t-test

* Basic idea:
 Comparison between 2 means accounting for variability

* Absolute difference vs. variability

7\

Control Treatment
group mean group mean



Variability does matter

Medium A" 4
variability % |
High
| variability
| |
I I
| |
Low

variability k'R



Quantitative variable
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95+

90—
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Variability does matter

80—

Group 1 Group 2
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Quantitative variable

Group 1

[ ‘ Absolute difference ‘

Group 2

Signal-to-noise ratio

Signal
Difference (signal) Noise
Variation (noise) Signal

Noise

= statistical significance

no statistical significance



Signal

Noise

Student’s t-test

Difference between group means +

Variability of groups

t-value



Student’s t-test

* 3 types, depending on experimental design One experiment

Control Treatment

* Independent t-test
* Difference between 2 means of one variable \\%
for two independent groups 4 different mice 4 different mice

e Paired t-test

e Difference between two measures of one
variable for one group Mouse 1

Same mouse
Before After

@

* One-Sample t-test

* Difference between the mean of a single Mouse 3
variable and a specified constant

/\

@

»wv



Example: coyotes.csv

-

* Do male and female coyotes differ in size?

e A TN
3

Ve, TR
A

* The file contains individual body length of male and female covy/o’t"és.

* Steps:
* Load coyote.csv

e Data exploration
* Plot the data as boxplot, violinplot, histogram and stripchart

* Check the assumptions for parametric test



Example: Load coyote.csv

e Readin the data using read csv after loading tidyverse
package
e Use path to where your data is stored

library (tidyverse)
coyote <- read csv("Datasets to use/Coyotes.csv")

= Coyotre
# A tibble: 86 = 2
Tength sex
<dbl> <chr=

93 female
a7 female
92 female

102, female

° | .
VIeW the data . gj 5 ::m:}: Environment  History  Connections Tutorial/ = ]
coyote 102. female = | | B Import Dataset =~ | P 309 MiB ~ | F List = -

97.8 Temale R = | ik Global Environment =
a1 female Data
head (Coyote) o 28  female © coyote 86 obs. of 2 variables
# 1 76 more rows 5 length: num [1:86] 93 97 92 102 93 ..
# i Use PFTﬂt{ﬂ = ...) TOD See more rows § sex : chr [1:86] "female” "female” "female" "femal.
View (coyote) -, Cspec’)-
. cols

length = col_double(),
sex = col_character()
. )

- attr{*, "problems"”)=<externalptr>

Or click on coyotes in Rstudio “Environment” tab



. - coyote %>%
Example: Data exploration S

es (x=sex, y=length))+
geom_. .. ()
Explore data using 4 different representations

o female male \
100 1 ¢ "
il . .. 9-
. ‘ . * I. " -
£ 904 $ —t ‘e -
[=)] CG‘
c
8 3
(3}
80 . .
- U_
701 I I : : : : : : : :
female male 70 80 90 100 70 80 90 100
sex length
100 1004
£ 804 = 90
© ©
C C
o o
801 804
701 T T 704 ! i
female mal femal mal




Example: Strip chart and line

100

length

80 1

701

seXx




Example: Strip chart: geom jitter()

* Variation of geom point(): geom Jjitter ()

coyote %>%
ggplot (aes (x=sex,y=length) )+
geom point ()

coyote $>%
ggplot (aes (x=sex, y=length)) +
geom jitter (height=0, width=0.2)

100 A

length

801

701

100 A

length

801

701

T
female

sex

T
female

sex




Example: Strip chart and line:

stat summary (geom=, fun=)

* Graphical representation = aline: geom="crossbar"

e Statistical summary, given function: fun

= "mean" (or "median")

100 4
coyote %>%

ggplot (aes (sex, length)) + !

geom jitter (height=0, width=0.2) + £ 90 R, ..
stat summary (geom="crossbar", L2 otk Ty
fun="mean'", width=0.6,

linewidth=0.3)+ '

704

female male
sex



Example: Strip chart and line:

stat summary (geom=, fun.data=

* Can alternatively add error bars: geom="errorbar"

* Now need function incl. error bars: fun.data="mean se"

(default)

coyote %>% 100-
ggplot (aes (sex, length)) +
geom jitter (height=0, width=0.2) +
stat summary (geom="errorbar",
fun.data="mean se",

width=0.3, linewidth=0.3) 0

length

704

:
female

sex

:
male




Example: Strip chart: stat summary ()

stat summary (geom=,
fun=, fun.min=, fun.max=)

e Can manually add min/max

max fun.max

mean fun — >+

T

min fun.min

stat summary (geom="point",
fun=median, colour = "red",size = 3)+
stat summary (geom="errorbar",
fun=median, fun.min=min,
fun.max=max)

100

80

704

# ggpubr # has more functions
that can be useful:
mean sd ()

mean ci()

mean range ()
median 1idgr ()

median glg3()

median range ()

R

female male
sex




Example: Histogram also works

facet wrap (~sex)

geom histogram() +
facet grid(rows=vars(row) ,cols=vars(column))

2 columns: one per sex

fer‘I\aIe

le

I=
One row )
Q

?I[} BI[} QI[} 1 IZI}D ?I[} BI[} BI[} 1 [I}[}
length
facet grid(cols=vars (sex))



Example: Histogram

geom histogram() -+

facet grid(rows=vars (row),cols=vars (column))

female male
12.5 1

coyote %>%
ggplot (aes (length)) +

10.04

geom histogram (binwidth = 4.5, " "
colour="black", 3
show.legend = FALSE) + >0

facet grid(cols=vars(sex))

2.5

0.0+

70 80 90 100 70 80 90 100
length



Example: Data exploration syl

aes (x=sex, y=length))+
()

geom
Explore data using 4 different representations:
facet grid(rows=vars ( ) ,cols=vars ( )) geom jitter()
geom histogram() stat summary (geom= "crossbar")

female male

1004

length

80

; ; : ; ; : ; ; 70
70 80 90 100 70 80 90 100 female male
length

100 1001

length
length

801 ‘ 801

geom boxplot () geom violin ()

.
701 T T 701 I T
female male female male




Example: Data exploration - Boxplots and violinplots

coyote %>% 0
ggplot (aes (x=sex, y=length)) +

length

geom boxplot ()

eeeeee

coyote %>%
ggplot (aes (x=sex, y=length)) +
geom violin ()

length




Length (cm)

Example: Data exploration - Boxplots and violinplots

coyote %>%
ggplot (aes (x=sex, y=length, fill=sex))+ 100
stat boxplot (geom="errorbar", width=0.5)+
geom boxplot (show.legend=FALSE) +
ylab ("Length (cm) ")+
xlab (NULL) +
scale fill manual (values = c("orange", "purple"))

2=}
(=]
1

Length (cm)

801

704

female male
1104

100 4
coyote %>%

ggplot (aes (x=sex, y=length, fill=sex))+
geom violin (trim=FALSE, linewidth=1, show.legend=FALSE) +
ylab ("Length (cm)")+
scale fill brewer (palette="Dark2")+
stat_summary (geom = "point", fun = median, show.legend=FALSE)

w
(=1
1

o
=1
L

704

female male
sex



Example: Data exploration - Histograms

coyote %>%
ggplot (aes (length, fill=sex))+
geom histogram(binwidth = 4.5, colour="black", show.legend = FALSE) +
scale fill brewer (palette="Dark2")+
facet grid(cols=vars (sex))

female male
12.5

10.0 1

7.5

count

5.01

2.5

0.0

70 80 90 100 70 80 90 100
length



Example: Data exploration - Stripcharts

coyote

ggplot (aes (x=sex, y=length,
geom jitter (height=0,
ylab ("Length (cm) ")+

Q Q
5>%

size=4,

colour=sex))

scale colour brewer (palette="Dark2")+

xlab (NULL) +
stat summary (geom="crossbar",

Length (cm)

100

904

804

704

fun=mean

_I_

width=0.2,

14

show.legend = FALSE) +

colour="black",

linewidth=0.5,

female

male

width=0.0)



Example extra: Data exploration - Combinations/overlays

Explore data using 2 different combinations/overlays of graphs

100 1

length

100

. . . - .
80 A 80+ l '1'
T[] _ T T
female male
sex

701

length

.
female




Example extra: Data exploration - Combinations/overlays

coyote $>%

ggplot (aes (x=sex, y=length)) +
geom violin () + 110 -
geom boxplot (width=0.2)
1001
£
= 904
£ 907 _E.Tl
= c
5 3
| 80 -
701 | ‘ 70+
coyote %>% Male Female

ggplot (aes (x=sex,y=length, fill=sex)) +
geom violin(linewidth=1, trim = FALSE, alpha=0.2, show.legend=FALSE) +
geom boxplot (width=0.2, outlier.size=5, outlier.colour = "darkred", show.legend=FALSE) +
scale fill brewer (palette="Dark2")+
ylab ("Length (cm) ")+
xlab (NULL) +
scale x discrete(labels=c("female"="Female", "male"="Male"), limits =c("male", "female"))



Example extra: Data exploration - Combinations/overlays

coyote $>%
ggplot (aes (x=sex, y=length)) +
geom_ boxplot () +
geom jitter (height=0, width=0.2)

e—
®
5_
® 08
100 @
®
]
oo @ E
Y '
100+ @ L
_— - ® @
. ®
. - £ & g geo °e
o . " L a0+ = -
£ 9% ~ - ) -{:_51 @ C@O & @
o .. * . .
& L P . . c S - * 9,
Q@ 4 . @ e |o °?®
] l - i a ol o .
¢ @
80 . 80 1 — = o®
701 [ ] N | ®
ale

70 / ‘

female male
sex

coyote %>%
ggplot (aes (x=sex, y=len )) +
geom_boxplot(outlier.shape=NA)
stat boxplot (geom="errorbar", width=0.2)+
geom jitter (height=0, width=0.1, size=2, alpha=0.5, colour="red")+
ylab ("Length (cm)")




Checking the assumptions



Sample

5.0

0.0+

-2.51

Normality assumption: QQ Plot

QQ plot= Quantile — Quantile plot

207

=

=

.'g 107

@

B

"6 0

>

@)

(&)

| & =101 ° °

Poor QQ plot 5 Normality M (ish)

201

-2 -1 0 9 2
Theoretical

Theoretical normal distribution Equivalent dataset
Same sample size

Perfectly normal distribution

Theoretical



Normality assumption: QQ plot

model <- aov(length ~ sex,
data = coyote)
ggggplot (residuals (model)) + theme bw ()

1104

ggggplot (coyote, x = "length", °
facet.by = “sex") + 5
theme bw ()

Sample

20

10

101

-20

‘..
- °
.

E_,ao _-T.!nl.._

5 o o &

s .f‘s

®

—u
@
S

L
L

0

Theoretical
O
*
704

female

-2 -1 0 1 2
Theoretical

2




Assumptions of Parametric Data

. o . 105 —T
First assumption: Normality —_—
. . 100 ! ¢ :v:
« Shapiro-Wilk test shapiro test () # rstatix package # ot o
- 95 | :o *e @
* Based on the correlation between the data and the corresponding o e o
normal scores B . e
85 - o.*l.o ..i *
model <- aov(length ~ sex, coyote %>% 80 — .
data = coyote) group by (sex) %>% 26
shapiro test (residuals (model)) shapiro test (length) 3
70 ~ : T
female male

variable statistic|p.value sex variable
residuals(model) 0.987 female length
male length

Normality

e Second assumption: Homoscedasticity
* Levenetest levene test()

dfl  df2 statistic

0.167929

coyote %>%
levene_ test(length ~ sex) 1 84

Homogeneity in variance

statistic

087001
0.9844570

Other options: Core R

Normality

Other classic: D’Agostino-Pearson test
dagoTest () # fBasics package #
Homoscedasticity

More robust: Brown-Forsythe test
bf.test () #onewaytests package #
Other classic: Bartlett test
bartlett.test ()



Independent Student’s t-test
To recap

K Data exploration and assumptions

Length (cm)

Sample

eeeeee

|
\ Much more important/useful

~

shapiro test (residuals (model))
variable statis_tw’_c p.va'lu_e
residuals(nodel)  0.987  0.568
Normality'ZI
coyote %>%
levene_test(length ~ sex)

dft df2 statistic p

1 84 0.167929 0.6830022

Homogeneity in variance M

/

Student’s t-test # rstatix package #

coyote %>%

t test(length ~ sex, var.equal = TRUE)



Independent Student’s t-test: results

t test (length~sex, var.equal = TRUE)

Y. groupl group2 [ mi n2  statistic df  p
1 length female male 43 43 -1.641109 84  0.105
coyote %>%
t test(length~sex, var.equal = TRUE, detailed = TRUE)
v v
estimate estimatel estimatel).y. groupl group? ni n2 statistic p df jconf.low conf.high |method alternative
<db ] > <db I > <db 1> |<chr> <chr> <chr> Tnt> <Tnt:> <dbl> <dbl> <dbl:- <db I> <dbl>|<chr> <chr>
-2.34 89.7 92.1)1length female male 43 43 -1.64 0.105 84 -5.18 0.496 )]T-test two.sided
coyote %>%
group by (sex) %>%
get summary stats(length, type = "mean se'")
Sex variable n ( mean e = &
<chr> <fct> <db > |«dbi> <dbl> o Iy — I2 t = 89.7 —92.1/SQRT(0.992+1.022)
female Tength 43 | 89.7 0.999 N/Z€Q(J;_+_l_)) _ 1
male length 43 | 92.1 1.02 S\l T ng =-1.64

 Answer: Males tend to be longer than females but not significantly so (p=0.1045)



Independent t-test: results
The old-fashion way

| 1
0 f —f 0 +f
One-tailed test Two-tailed test

Level of Significance for One-Tailed Test

0.25 .20 .15 o.10 .05 0.025 o.01 0.005 0.0005
Lewvel of Significance for Two-Tailed Test
df 0.50 .40 0.30 0.20 0.10 .05 0.02 o.01 0.0
1000 1376 1963 3078 34 30821 63657 636620
2920 4303 6.965 9.925 31599
2353 3182 4541 5.841 12924
2132 2776 3.747 4604 8610
2015 2571 3.365 4032 6.860
1.943 2447 3,143 3707 5.959
1.895 2365 2.008 3.499 5.408
1.860 2306 2.896 3.355 5.041
1.833 2262 2821 3.250 4781
o . ; . . 1.812 228 2764 3.169 4587
ni n2 statistic 11 0697 0876 1088 1363 179 2201 2718 3.106 4437
dnt- <int T 12 0695 0873 1083 1356 1782 2179 2.681 3055 4318
3 0694 0870 1079 1350 L1771 2,160 2,650 3012 4221
43 43 -1.641109 4 0692 0868 1076  1M5 176 2,145 2.624 2977 4.140
i5 0691 0866 1074 1341 L1753 2131 2.602 2047 4073
16 0690 0865 1071 1337 1746 2120 2,583 2901 4015
17 0689 0863 1069 1333 1740 2110 2.567 2.898 3.965
I8 0688 0862 1067 1330 1734 2101 2,552 2878 3022
19 0688 0861 1066 1328 1729 2093 2,530 2.861 31883
0 0687 0860 1064 1320 e ~ nos ~ oo noie noen
21 068 0859 1063 13% . . o
2 068 0858 1061 132 — o
2o oo 3 t=1.641 < 1.984: not significant
24 0685 0857 1059 131
25 068 0856 1058 1316  L708 2,060 2.485 2787 3725
26 068 0856 1058 1315 L1706 2056 2479 2779 3707
27 068 0855 1057 1314 L703 2052 2473 2771 3,600 -
28 0683 0855 1056 1313 1701 2,048 2.467 2.763 1674 Crltlcal Value
29 0683 0854 1055 1311 1699 2045 2.462 2756 659
30 0683 0854 1055 1310 1697 2.457 1646
il 0681 0851 1050 1303 1684 4 3.551
50 ) 067 0849 1047 1299 1676 2.403 2678 3.496
wo | 0677 0845 1082 1200 1e60 2364 2626 3390
0674 0842 1036 1282 1645 2326 2.576 3291




Independent t-test: results
Power!

* Power: How many more coyotes to reach significance?

coyote %>% 90 _
group by (sex) %>%
_ 80 -
get summary stats(length, type = "mean sd") okl hadiadia
70
Sex variable n mean sa
female length 43| 89.7 6.55
male  length 43 92.1 6.70
> power.t.test(delta=92.1-89.7, sd=6.7, sig.level=0.05, power=0.8) 40
Two-sample t test power calculation 30 J
t = 123.3067 20 ]
delta="7.3 With nearly 250 coyotes, we get a — —
sd = 6.7 10 —
sig.level = 0.05 Star n=1178238
power = 0.8 0
alternative = two.sided

NOTE: n is number in *each® group

But does it make sense?



Independent t-test: results
Plotting the data

colour=sex)) +
geom jitter (height=0, width=0.1)+

coyote %>%

ggplot (aes (sex, length,

geom bar (stat = "summary", fun="mean", width=0.4, alpha=0, colour="black")
] R ':';_1 100- —— ¥
"- i e ’::.. 1 Peo?
754 ".—.*;-.—. 'J'::::
Eﬁ 504 S:exfemale ?5 - :
25 £ sex
g 50 - «  female
ol ° *  male
251
 Add error bars
coyote $>% ’ | |
ggplot (aes (sex, length, colour=sex)) + female cox male
geom jitter (height=0, width=0.1)+
geom bar (stat = "summary", fun="mean"

, width=0.4, alpha=0,
stat summary (geom="errorbar", colour="black", width=0.2)

colour="black") +



Independent t-test: results - T
. 100 :.ﬂ' i b
Plotting the data <% e
* Prettier version
coyote %>% A Male Female

ggplot (aes (sex, length, colour=sex, fill=sex)) +

geom jitter (height=0, width=0.1, show.legend=FALSE, size=3, alpha=0.8)+

geom bar (stat="summary", fun="mean", width=0.4, alpha=0.2, colour="black", show.legend=FALSE)+
stat summary (geom="errorbar", colour="black", width=0.2)+

scale colour brewer (palette="Dark2")+

scale fill brewer (palette="Dark2")+

theme (legend.position = "none")+

scale x discrete(limits = c("male", "female"), labels = c("male"="Male", "female"="Female"))+
scale_y continuous (breaks=c(seq(0,110,10)), limits = c(0, 110))+

xlab (NULL) +

ylab ("Length (cm)")



Independent t-test: results
Plotting the data

# ggsignif package # ]
t results <- coyote 3%>% : —
t test (length~sex, var.equal = TRUE) o0 )
Ot_r-‘e;su'lts 1c R
g v : chr "length" B N 3
$ groupl : chr "female" € . %o o o? 2
< group? : chr "male" L go ® . —
£ nl :int 43 £ oo
g n2 1 oint 43 S .
§ statistic: Named num -1.64 - 3 *
..- attr(*, "names")= chr "t" E . ; s
g df : Named num 84
= attr(x  "names"JI= chr "df"
( ) P nuT~0_.}OTS ] N 80 o —_—
coyote %>%
ggplot (aes (sex, length)) +
704

stat boxplot (geom="errorbar", width=0.2)+ Ve Ferale

geom boxplot (outlier.shape = NA)+

geom jitter (height=0, width=0.1, size = 2, alpha = 0.5, colour="red")+

scale x discrete(limits = c("male", "female"), labels = c("male"="Male", "female"="Female"))+
ylab ("Length (cm)")+

xlab (NULL) +

geom signif (comparisons = list(c("female", "male")), annotations = t results$p)



Independent t-test: results
Plotting the data

# ggsignif package # [
£ oa,oo ¢
This also works but there is less control on the test. . —l
coyote %>%
ggplot (aes (sex, length)) + N

stat boxplot (geom="errorbar", width=0.2)+ Male Female

geom boxplot (outlier.shape = NA)+

geom jitter (height=0, width=0.1, size = 2, alpha = 0.5, colour="red")+

scale x discrete(limits = c("male", "female"), labels = c("male"="Male", "female"="Female"))+
ylab ("Length (cm)")+

xlab (NULL) +

geom signif (comparisons = list(c("female", "male")), test = "t.test")



]
Dependent or Paired t-test -
-1 A
—_— -2 *
For paired t-test there are 2 ways of approaching: S M '
& 51 .
. . L 6- )
e Calculate differences and use these as input to a one sample t-test o T o
O g
Q
working.memory <- working.memory $%>% %q?: 1
mutate (difference = DA.depletion - placebo) S 12+ .
working.memory $>% = 131
. . -14 1 ®
t test (difference ~ 1, mu=0, detailed = TRUE) 15- <
-16-
DA.DeIpIetion
treatment 3 placsbo F DA depletion
* Using paired version of t test ()on long form data ”
working.memory.long <- working.memory %>% .
pivot longer (cols= 2:3, names to = "treatment", i
values to = "scores") £ ‘ }

working.memory.long %>% 25

.
|
. |
|

t test(scores ~ treatment, paired = TRUE)-> stat.test

arrange (Subject) $%>% 2 TJ

placebo DA depletion

Treatment



Dependent or Paired t-test =

* Means also two ways of plotting — plotting differences or paired plots

working.memory.long %>%
arrange (Subject) %>%
ggplot (aes (x=treatment, y=score, group=Subject))+
geom line(linewidth=1, colour = "grey")+
geom point (colour= "black", size = 2) +
scale y continuous (breaks=seq(from =0, by=5, to=60),
limits = ¢ (0,060)) +

geom signif (comparisons = list(c("placebo", "DA.depletion")),
test = "t.test", test.args = list(paired=TRUE),
map signif level = TRUE)
# ggpubr package # ]
working.memory.long %>% ggline () ol
ggpaired (x = "treatment", y = "scores", ol
color = "treatment", id = "Subject", ]
palette = "Dark2", line.color = "gray", %1
line.size = 0.4, %w
xlab = "Treatment", ylab = "Scores")+ ]

scale y continuous (breaks=seq(from =0, by=5, to=60), ™
limits = c(0,60))+ °]

stat pvalue manual (stat.test, label="p = {p}", i
y.position = 55) ol

101

60

504

45

40 A

351 b4

30

score

25

20

DA depletion placebo
treatment

treatment E:'El placebo EEI DA depletion

p=571e-07

|

: |
I —
!

. |

i

!

placebo DA depletion
Treatment



Extra R: changing format

Simon Andrews, Anne Segonds-Pichon
v2021-09



Data file format: Example

3 WT mice
Long format

Genotype | Replicate

Wide format 3 WT mice 3 KO mice WT . 2 86

. . 3 ko1 [ko2 [ko3 | WT 2 4.18

Gene 1 [IN1&1 886 418 890 400 1452  13.39 et - owr 3 ) 890
Gene 2 [ag] 29.60 41.22 36.15 11.18 16.68 1.64 KO 1 ) 4.00
KO 2 14.52

KO 3 ) 1339

(O OWT 1 ) 29.60

WT 2 41.22

WT 3 36.15

Gene 2 4 - T 1118

KO 2 16.68

L+ KO 3 ) 164

3 KO mice



Converting between formats: Tidying operations

*pivot_longer ()

* Takes multiple columns of the same type and puts i i |j

A
: : ——
them into a pair of key-value columns N
B
. separate EI
* Splits a delimited column into multiple columns WT D1 wr I o1 IS
wrot g wr | o1

*pivot wider ()

* Takes a key-value column pair and spreads them out to
multiple columns of the same type

*unite
 Combines multiple columns into one

A B C

E
]
!
£

T D1

OO0 WWW > >
|



Converting to ‘tidy’ format
wide to long

> working. memory
# A tibble: 15 x 4

Subject placebo Da.depletion # A tibble: 30 x 3
;fﬁﬁ} ﬁﬂﬁ’g {ﬂ1;; Subject treatment scores
- .|!'I . = TF "l'-lll T".‘\-
M2 10 - <chr: <chr: <dbI:
M3 15 10 M1 I]1EI.CEI:}G . 9
Md 18 12 M1 DA.depletion 7
M3 19 13 M2 placebo 10
M& 22 13 M2 DA.depletion 7
M; gg ig M3 placebo 15
M M3 DA.depletion 10
M3 28 15 1 b
M10 30 21 M4 placebo 18
M1l 33 33 M4 DA.depletion 12
M12 37 25 M5 placebo 19
M13 39 27 M5 DA.depletion 13
M14 4% 33 # ... with 20 more rows
M15 0 35

working.memory %$>%
pivot longer (cols= 2:3, names to = "treatment", values to = "scores")



Exercise 2
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Analysis of Quantitative data
One-Way ANOVA

Hayley Carr & Anne Segonds-Pichon
v2025-02

Babraham ; )
Bioinformatics



Analysis of Quantitative data
One-Way + Two-Way ANOVA

* One-way ANOVA
* |Independent design
* Repeated measures design

 Two-way ANOVA (two factors/predictors)
e Tests each factor and interactions between them
* |Independent design
 Repeated measures design (time series)



Comparison between more than 2 groups

One factor = One predictor
One-Way ANOVA



Quantitative variable

Group 1

[ ‘ Absolute difference ‘

Group 2

Signal-to-noise ratio

Signal
Difference (signal) Noise
Variation (noise) Signal

Noise

= statistical significance

no statistical significance



Analysis of variance: how does it work?

Signal _  Difference between the means
Noise Variability in the groups
= Fratio

* |f the variance amongst sample means is greater than the error/random variance, then
F>1

* In an ANOVA, we test whether F is significantly higher than 1 or not



One-Way Analysis of variance

Step 1: Omnibus test

e |t tells us if there is a difference between the means but not which means are
significantly different from which other ones

Step 2: Post-hoc tests

 Tell us if there are differences between the group means pairwise
* A correction for multiple comparisons will be applied on the p-values
e Should only be used when the ANOVA finds a significant effect



Analysis of variance: how does it work?
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Source of variation | Sum of Squares df Mean Square F p-value
Between Groups 18.1 4 4.5 6.32 0.0002
Within Groups 51.8 73 0.71
Total 69.9




Continuous variable

Analysis of variance: how does it work?
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Continuous variable
1

grand mean
Ogogg 78 differences: Y78 (value, — grand mean)?
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388388 Sum of squared errors
088800

Source of variation

Sum of Squares

df Mean Square F p-value
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Continuous variable
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Analysis of variance: how does it work?

5 differences: Zi (mean, — grand mean)?

Sum of squared errors
Between the groups

grand mean
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Source of variation | Sum of Squares df Mean Square F p-value

Between Groups

18.1

Within Groups

Total

69.9




Continuous variable

Analysis of variance: how does it work?
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Analysis of variance: how does it work?
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Source of variation | Sum of Squares df Mean Squares | F ratio p-value

Signal Between Groups 18.1 k-1
Noise Within Groups 51.8 n-k
Total 69.9

df: degree of freedom with df = n-1
n = number of values, k = number of groups
Between groups: df = 4 (k-1)
Within groups: df =73 (n-k=n;-1 + ... + n.-1)



Analysis of variance: how does it work?

© e o o

g o ooo 080

g 8 0© 0O 828

g 9 080

© o

A B C D E
Source of variation | Sum of Squares df Mean Squares | F ratio p-value
Signal Between Groups 18.1 ( 4 4.5 ]
Noise Within Groups 51.8 L 73 0.71 J
Total 69.9

df: degree of freedom with df = n-1
18.2/4=4.5 51.8/73=0.71

Mean squares = Sum of Squares / n-1 = Variance!



Analysis of variance: how does it work?

@
g .
B o] o]
; 00800 00, g 8°%9g
§ o o —O:O— 0° o 2 o
'g o 80 ©g°
@) ° ° °o 8
A B C D E
Source of variation | Sum of Squares df Mean Squares | F ratio p-value
Between Groups 18.1 4 4.5 0.0002
Within Groups 51.8 73 0.71
Total 69.9

Mean squares = Sum of Squares / n-1 = Variance

Variance between the groups

F ratio =

Variance within the groups (individual variability)

4.5
0.71

6.34



One-Way Analysis of variance

Step 1: Omnibus test

e It tells us if there is a difference between the means but not which means are
significantly different from which other ones

Step 2: Post-hoc tests

 Tell us if there are differences between the group means pairwise
* A correction for multiple comparisons will be applied on the p-values
* Should only be used when the ANOVA finds a significant effect



Comparison of more than 2 means

* Running multiple tests on the same data increases the familywise error rate
= error rate across tests on the same experimental data

* One of the basic rules (‘laws’) of probability:

* The Multiplicative Rule: The probability of the joint occurrence of 2 or more
independent events is the product of the individual probabilities

P(A,B) =P(A) x P(B)

For example:
P(2 heads) = P(head) x P(head) =0.5 x0.5=0.25




Familywise error rate

 Example: All pairwise comparisons between 3 groups A, B and C:
= A-B, A-C and B-C

* Probability of making the Type | Error: 5%
= probability of not making the Type | Error is 95% (= 1 —0.05)

* Multiplicative Rule:
* Overall probability of no Type | errors =0.95*0.95*0.95 = 0.857

* Probability of making at least one Type | Error =1-0.857 =0.143 or 14.3%
* Probability has increased from 5% =2 14.3%

* For comparisons between 5 groups, the familywise error rate is 40% (=1-(0.95)")



Familywise error rate

* Solution to increased familywise error rate = correction for multiple
comparisons

— post-hoc tests

* Many different approaches:
e Different statisticians addressed different issues

* e.g. unbalanced design, heterogeneity of variance, liberal vs
conservative

 Two main ways to address the multiple testing problem:
* Familywise Error Rate (FWER) and False Discovery Rate (FDR)

* In all cases:
More tests =2 higher familywise error rate = more stringent correction



Multiple testing problem

 Difference between FWER and FDR:
* FWER: a p-value of 0.05 implies that 5% of all tests will result in false positives
* FDR: an adjusted p-value (or g-value) of 0.05 implies that 5% of significant tests will
result in false positives
* FWER: Bonferroni: o
* Problem: very conservative leading to loss of power (lots of false negative)

= 0.05/n comparisons, e.g. 3 comparisons: 0.05/3=0.016

* 10 comparisons: threshold for significance = 0.05/10 = 0.005
* Pairwise comparisons across 20,000 genes = 0.05/20,000 = 2.5x10°

* FDR: Benjamini-Hochberg: controls the expected proportion of “discoveries” (significant
tests) that are false (false positive)

e Correction applied only on the significant tests
* More power but increased Type | Errors



Repeated measures One-Way ANOVA

* A new assumption:

e That the variances of the differences between all combinations of related conditions
(or group levels) are equal — known as the assumption of sphericity

 The Mauchly’s test of sphericity is used to assess whether the assumption of
sphericity is met

* If the assumption of sphericity is not met, a correction is applied

e Often the default as the assumption is seldom met

* Most common correction: Greenhouse-Geisser correction



Exercise: One-way ANOVA: Data Exploration
protein.expression.csv

e Question: is there a difference in protein expression between the 5 cell lines?

* Load protein.expression.csv

* Plot the data using at least 2 types of graph

* geom boxplot (), geom jitter (), geom violin ()

* Draw a QQplot
* ggggplot () #ggpubr package#

e Check the first 2 assumptions with formal tests
* shapiro test () levene test () # rstatix package #



Exercise: One-way ANOVA: Data Exploration

protein %>%
ggplot (aes (x=11ine, y=expression, colour=line))+
geom boxplot (outlier.shape = NA)+
geom jitter (height=0, width=0.25, alpha=0.5, size=5)

®
®
.51
751
c line
'% 5.0 ' g g
o B c
o @ g E c line
® % 501 ]
)-::> = ‘i\ ‘ 9;.:_ C ;
254 ® I [} L
> e
& > ®
- Y J L ]
i - ] l) s 251 r
‘ [ — 1 $ ‘Jﬂ"(:) . ] @ L ] -
0.0 . b . ® ©
’ ’ ine ’ ) _ ———— A TP
] 2 e ) [) A [ 2 O-\_)(b) ® ]
protein %>% 001 ! , ] ] .
. : . A B c D E
ggplot (aes (x=1ine, y=expression, colour=line))+ line

geom jitter (height=0, width=0.3, alpha=0.5, size=5)+
stat summary (geom="crossbar", fun=mean, colour="black", linewidth=0.5)

mo o o>



Exercise: One-way ANOVA: Data Exploration

Histograms & density plots

protein %>% 201
ggplot (aes (x=expression) )+
geom histogram (binwidth = 0.45, .

colour="black")

count

101

061

0.44 _K 0 -

0.0 25 5.0 7.5 10.0
expression

protein %>%
ggplot (aes (x=expression) )+

geom histogram(aes (y=after stat (density)),
— s colour="black", fill="white")+
> geom density(alpha=0.2, fill="#FF6666")

0.0 25 5.0 7.5 10.C
expression

density

024




Exercise: One-way ANOVA: Data Exploration

QQ plot
Build an anova model so can extract residuals
model <- aov(expression ~ line, data = protein)

Then draw the QQ plot
ggggplot (residuals (model)) + theme bw ()

5.01

0.0

-2.51

#ggpubr package#

Theoretical



Exercise: One-way ANOVA: Data Exploration

QQ plot
Or can look at groups individually
ggggplot (protein, x = "expression", facet.by = "line")

7.57

5.01

251

Sample

7.54

5.04




Exercise: One-way ANOVA: Data Exploration

protein %>%
group by (line) %>%
identify outliers (expression)

line expression log10.expression is.outlier is.extreme
C 3.14 0.4569296 TRUE FALSE
C 2.78 0.4440448 TRUE FALSE
D 9.32 0.9694159 TRUE TRUE
3 rows
@
7.51
c line
% o [ g g
5 ® c
> @ EZ D
4 E

® [ ]
[ o€
254 ~

0.01




Exercise: One-way ANOVA: Data Exploration

model <- aov(expression ~ line, protein %>%
data = protein) levene test (expression ~ line)
protein %>%
shapiro test (residuals (model)) # A tibble: 1 x4 =
— dfl df2 statistic
variable statistic p.value <INt> <TRC> <db >
<chrs b s <db 1> 4 73 2.88(0.0282
residuals(model) 0.772|0.00000000120

protein %>%
group by (line) %>%
shapiro test (expression)

7.51

g
(U]

line  variable statistic P g0 o gg
A expression 0.9295671 0.3755460156 5 e g 2
B expression 0.9535144 0.GEB7BE7228
C expression 0.8196840 [ 0.002921089]1 ] A olo
D expression 0.7530720 0.0003548725 251 ®
E expression 0.9670693 0.7411280600 | L’ T
2 °e
4 I

What do we do now? N L, . i S T



One-way ANOVA

Change of scale

protein $%>%
ggplot (aes (x=11ne, y=expression, colour=line))+
geom jitter (height=0, width=0.2, size=3, show.legend=FALSE) +
stat summary (geom="crossbar", fun=mean, colour="black", linewidth=0.5) +
scale y loglO()

10.0 1
® 3
+ scale y loglO()
@
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) @ e 4
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¢ 8 T e 04
Co L ¢ ®
0.0
A B c D E A B c D
line line

protein %>%
mutate (logl0.expression=1o0gl0 (expression)) -> protein

line

moo®>



log10.expression

One-way ANOVA

Log-transformed values
protein %>%
ggplot (aes (x=1line, y=loglO.expression, colour=line))+
geom boxplot () +
geom jitter (height=0, width=0.25, alpha=0.5, size=5)
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@ _e_';)_ J
& g ) @
) R
, ) @9 4
os ® < @
@ @
elg 057 i
A B o] D E ] @
line -
A B c D E
' o o .
proteln %>% fine

ggplot (aes (x=1ine, y=loglO.expression, colour=line))+
geom jitter (height=0, width=0.25, alpha=0.5, size=5)+
stat summary (geom="crossbar", fun=mean, linewidth=0.5)



One-way ANOVA

Log-transformed values

model <- aov(loglO.expression ~ line, data = protein)
ggggplot (residuals (model))

1.0

0.91

Before log-transformation

-0.51

Sample

-1.01

2 A 0 1 2
Theoretical

First assumption v°

Theoretical



Assumptions of Parametric Data
Formal tests

protein %>% model <- aov(loglO.expression ~ line,
group by (line) %>% data = protein)
shapiro test(logl0.expression) protein %>%
shapiro test (residuals (model))
line  variable statistic /—p\
=chr> =chr= =0l <dbl* # A tibble: 1 x 3
[ A log10.expression 0.8542464 |0.04143953 variable statistic p.value
E log10.expression 0.9458450 |0.5772532] "‘”",’g 15 (model) gﬂgs’g 5‘;66
c log10.expression 0.9657060 |0.71417958 restdualsimode ' '
D logl0.expression 0.9363425 0.99348831
E log10.expression 0.9313425 0.20302703
—__
First assumption ¥'ish -'
9 ’ . {
g -

) . .
protein %>% % ™ . . = %
levene test(logl0.expression ~ line) S gof | . ) B I .

g . J - ’ 7

XK J L]

dft  df2 statistic P [ : .
4 73 0.982112 0.4227373 o5l . S .T .l

Second assumption v/ N L



Analysis of variance
Let’s do it

e Task 1: omnibus test

data %>%
anova_test (y~x)

Task 2: post-hoc tests

Default
Tukey correction Bonferroni correction # emmeans package #
data %>% data %>%
tukey hsd(y~x) emmeans test (y~x, p.adjust.method="bonferroni")

* Extra task: Plot confidence intervals - L

comparison
> © @

estimate



protein %>%

Analysis of variance

anova_ test (logl0.expression~line)

ANOVA Table (type II tests)

1

Effect DFn DFd

Tine

4 73 8.

protein %>%

tukey hsd(loglO.expression~line)

F p |p<.05 ges
123|1.78e-05 * 0.308

Not the p-value!

Tukey correction

term groupl group2 estimate conf.low conf.high | p.adj | p.adj.signif
1 line A B -0.25024832 -0.578882494 0.0/838585 | 2.19e-01 |ns
2 line A C -0.07499/724 -0.37499/7820 0.22500335 [ 9.56e-01 [ns
3 line A D 0.3054939/ 0.005493391 0.60549456 | 4.39e-02 |* ]
4 line A E 0.13327517 -0.166725416 0.4332/5/75 | 7.2/7e-01 |ns
5 line B C 0.17525108 -0.124/749499 0.4/7525167 | 4.81e-01 |ns
6 line B D 0.55574230 0.255741712 0.85574288 | 1.83e-05 |****
7 line B E 0.38352349 0.083522904 0.6835240/7 | 5.48e-03 |**
8 line C D 0.38049121 0.112162532 0.64881989 | 1.54e-03 |**
9 line C E 0.20827240 -0.0600562/6 0.4/7660108 | 2.02e-01 |ns
10 line D E -0.17221881 -0.44054/7487 0.0961098/ ns

3.84e-01

log10.expression

generalised effect size (Eta squared n?) = R%ish

10




protein %>%
anova_ test (logl0.expression~line)

ANOVA Table (type II tests)

Effect DFn DFd F

1 Tine

protein

emmeans_ test (loglO.expression ~ line, p.adjust.method = "bonferroni")

4 73 8.123

$>%

p |p<.05
1.78e-05

Bonferroni correction

s
ra

Analysis of variance

ges
0.308

T~

generalised effect size (Eta squared n?) = R%ish

|

Y. groupl group2 df  statistic P p.adj) p.adj.signif
1 log10.expression A B 73 2.1299578 3.654611e-02 | 3.654611e-01|ns
2 logl0.expression A C /3 0.6992552 4.866147e-01 | 1.000000e+00] ns
3  logl0.expression A D 73 -2.8483483 5.705474e-03 | 5.705474e-02 ns]
4  logl0.expression A E 73 -1.2426238 2.179833e-01 | 1.000000e+00|ns
5 logl0.expression B C 73  -1.6339966 1.065653e-01 | 1.000000e+00|ns
6 logl0.expression B D 73  -5.1816001 1.882302e-06 | 1.882302e-05 | #*#**
7 logl0.expression B E 73 -3.5758757 6.238766e-04 | 6.238766e-03 | **
8 logl0.expression C D 73 -3.9663413 1.687079%e-04 | 1.687079e-03 | **
9 logl0.expression C E 73 -2.1710868 3.317601e-02 | 3.317601e-01|ns
10 log10.expression D E 73 1.7952545 7.675206e-02 \ 7.675206e-01)ns

log10.expression

# emmeans package #




protein $>%

term
line
line
line
line
line
line
line
line
line

line

tukey hsd(loglO.expression~line) %$>%
mutate (comparison = paste(groupl,

groupi group null.value

A B 0
A C 0
A o 0
A E 0
B C 0
B ] 0
B E ]
C o ]
C E ]
o E 0

tukey.conf >3

ggplot(aes(x=comparison,[y=estimate}’ymin=conf.low, ymax=conf.high) )
geom errorbar (colour="black", linewidth=1)+

geom point (size=3, colour="darkred")+

coord flip()+

' ) l ‘

estimate conflow conf.high
-0.25024832| -0.5788824%4 007838585
-007499724| -0.374997820 022500335
030549397 | 0.005493391 060549456
013327317 -0.166725416 043327575
017525108 | -0.12474549% 047525167
0.55574230| 0.255741712 055574288
038352349| 0.083522904 065352407
038049121| 0112162532 064851989
020827240 -0.060056276 047660108
-017221881) -0.440547487 009610987

Analysis of variance
Plot confidence intervals (forest plots)

p.adj
2.18e-01
9.562-01

p.adj.signif
ns

ns

4.3%e-02 =

T7.27e-01

4.&1e-01

1.63e-05 *

S48e-03
1.54e-03
2.02e-01
3.54e-0

nz

nz

ns

ns

sep=".", group2))

-> tukey.conf

comparison DEA I & E
AB |

B |
A |
AD C.D+ I
AE | |

B.E A !
B.C S | |
B.D E B.D A i 4

8 L |

> £ BCH — . |
- 8 | : |
ce ° AE] — |
DE i ] |

AD .I |

AC- I —

AB A # :

U . ; .
05 0. 0.5
L estimate

geom hline(yintercept=0, linetype="dashed", color = "red")+

_|_




Analysis of variance
Stripchart

protein %$>%
ggplot (aes (x=1line, y=expression, colour=line))+

geom jitter (height = 0, width=0.2, size=6, show.legend=FALSE, alpha=0.5)+

stat summary (geom="errorbar", fun=mean, fun.min=mean, fun.max = mean, colour="black",
linewidth=1)+
scale y loglO()

10.0

301

expression

&
Ol

P
[ 1
LR RS
-
[ ]
L

0.3

line



Analysis of variance
Overlay: stripchart and barchart

protein %>%
ggplot (aes (x=1ine, y=expression, fill=line)) +
geom bar (stat="summary", fun="mean", colour="black", show.legend=FALSE) +
stat summary (geom="errorbar", colour="black", width=0.4)+
geom jitter (height=0, width=0.1, alpha=0.5, size=4, show.legend=FALSE)

o
‘& 5.0

expression

251

0.04




Analysis of variance
Overlay: boxplot and stripchart (log10 data)

protein %>%
ggplot (aes (x=1ine, y=loglO.expression,

geom boxplot (show.legend=FALSE) +
geom jitter (height=0, width=0.1, alpha=0.5, size=4, show.legend=FALSE)

fill=line)) +

log10.expression




Analysis of variance
Overlay: boxplot and stripchart (log scale)

protein %>%
ggplot (aes (x=1ine, y=expression, fill=line)) +
geom boxplot (show.legend=FALSE) +
geom jitter (height=0, width=0.1, alpha=0.5, size=4, show.legend=FALSE)+

scale y loglO()

pre:




Analysis of variance
Graphical presentation with p-values

Approach 1: ggpubr

p=0.384
1
p=0.202
T \
p=000154

p=0.00548

proteins. tukey <- protein %$>%
tukey hsd(loglO.expression~line) %>% 2 [ peom
add xy position() p=0727

p=1.83e-05

p=00439

T
p=00956

p=0219

protein $%$>%
1
(

ggplot (aes (x=1ine, y=loglO.expression, colour=line)) +
geom boxplot (show.legend = FALSE) +

Log10 Protein Expression

geom jitter (height=0, width=0.1, alpha=0.5, of o't |

size=5, show.legend = FALSE) + P

label.size=4,tip.length=0.02,step.increase=0.02) + ‘
xlab ("Cell lines")+
yvlab ("LoglO Protein Expression")

@
stat pvalue manual (proteins.tukey, label="p = {p.adj}", " - o
— e @

Cell lines



Analysis of variance
Graphical presentation with p-values

1.51

Approach 2: also ggpubr

protein %$>%
ggplot (aes (x=1ine,
geom boxplot (show.legend =
geom jitter (height=0, width=0.1,
size=5, show.legend =
stat _pwc (method = "tukey hsd",
hide.ns = TRUE,
xlab ("Cell lines")+
ylab ("LoglO Protein Expression")

OR
protein 3s>%

ggplot (aes (x=1ine,
geom boxplot (show.legend =
geom jitter (height=0, width=0.1,
size=5, show.legend =
stat_pwc (method = "tukey hsd",
hide.ns = TRUE, show.legend

xlab ("Cell lines")+
ylab ("LoglO Protein Expression")

show. legend

y=10gl0.expression,
FALSE) +

colour=1line) )+

alpha=0.5,

FALSE) +
label = "p.adj",

y=10gl0.expression,
FALSE) +

FALSE) +

colour=1line) ) +

alpha=0.5,

FALSE) +
label = "p.adj.signif"

FALSE) +

Log10 Protein Expression

-0.51

Log10 Protein Expression

0.51

0.00154
0.00548

1.83e-05

0.0438

®
B c D E
Cell lines
=
1 5 — *%
1
1.0 &
»
@
05 .
0.0 8 o
CC)
@

-0.51

Cell lines




Analysis of variance
Graphical presentation with p-values

Approach 3: ggsignif

0.00154

'W‘
' 1.83e-05
' 0.0439 '
sig.comp <- proteins.tukey %>% g 10- °
filter (p.adj<0.05) '%
S ®
protein %>% 1 057 ~ ‘
ggplot (aes (x=1ine, y=loglO.expression, colour=line))+ g L ® éi .
geom boxplot (show.legend = FALSE) + o & ® ' g
geom jitter (height=0, width=0.1, alpha=0.5, < 001 8 C% j? |
size=5, show.legend = FALSE)+ 3 - ® |
geom signif (comparisons = list(c("A","D"), c("B","D"), \ T
C("B"I"E")I C("C"I"D"))/ 057 | ’
annotations = sig.comp$p.adj, T . z . T
y position = c¢(1, 1.1, 1.2, 1.3), colour = "black", Cell lines

show.legend = FALSE) +
xlab ("Cell lines")+
ylab ("LoglO Protein Expression")



'v

w

Analysis of variance
Matched/repeated measures

e
* For repeated measures ANOVA and post-hoc tests need to specify matching:

Experiment identifier

/

anova test(dv =, wid =, within =) -> res.aov
get_anova_table (res.aov) To choose the Reference group and
pairwise t test(p.adjust.method =)« account for the matched design
neutrophils.long %>%
_ . _ . Table format:| Group A Group B Group C Group D
anova_test (dv = Values, wid = Experiment, Fa <= o G e
within = Condition) -> res.aov 4 &
get anova table(res.aov) 1 Expl 34.00 53.00 35.00 91
:H: post—hoc test 2 Exp2 23.00 52.00 30.00 99
neutrophils.long %>% 3 Exp3 45.00 69.00 39.00 78
S . e o _ 4 Exps 54.00 77.00 38.00 90
pairwise t test (Values~Condition, paired=TRUE, 5 | Exps 8500 99 00 45.00 135
ref.group = "WT", p.adjust.method = "holm")




Analysis of variance: Matched/repeated measures

* Again, when plotting want to show matching

neutrophils.long %>%
mutate (Condition=factor (Condition,
levels = c("WT", "KO", "KO+Tl", "KO+T2")))

neutrophils.long %>%
ggplot (aes (x=Condition, y=Values, group=Experiment,
colour=Experiment, fill=Experiment)) +
geom line (linewidth=2)+
geom point (size=4, shape=21,
colour="black", stroke=2)

neutrophils.long %>%

ggplot (aes (x=Condition, y=Values, colour=Experiment))+

geom boxplot (outlier.shape = NA, colour="black")+
geom jitter (height=0, width=0.2,
size=6, alpha=0.7)

Values

1004

501

Values

1001

504

5

KO+T1

KO+T2

KO KO+T1
Condition

KO+T2

Experiment
Q Expt
Q© EBxp2
@ B2
Q@ Exp4
© EBxps

Experiment

Exp1
O Exp2
© Exp3
O Exp4

Exp5
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Comparison between more than 2 groups

Two factors = Two predictors
Two-Way ANOVA



Two-way Analysis of Variance

(Factorial ANOVA)

Source of variation Sum of Df Mean F p-value
Squares Square

Variable A (Between 2.665 4 0.6663 8.42 | <0.0001

Groups)

Within Groups 5.775 73 0.0791

(Residual)

Total 8.44 77

One-way ANOVA=

1 predictor variable

SSwm

Variance Explained by the Model

Within Groups

Source of variation Sum of Df Mean F p-value
Squares Square

Variable A * Variable B 1978 2 989.1 | F(2,42)=11.91 |P<0.0001

Variable B (Between

groups) 3332 2 1666 F(2,42)=20.07 |P<0.0001

Variable A (Between

groups) 168.8 1 168.8 F(1,42)=2.032 |P=0.1614

Residuals 3488 42 83.04

2-way ANOVA-= 2 predictor variables: A and B

SSa

Variable A

Variance Explained by

SSwm

Variance Explained by the Model

SSs

Variance Explained by

Variable B

SSaxB

Variance Explained by the
Interaction of A and B




* Interaction plots: Examples

Fake dataset:

e 2 factors: Genotype (2 levels) and Condition (2 levels)

Genotype

Genotype 1
Genotype 1
Genotype 1
Genotype 1
Genotype 1
Genotype 1
Genotype 2
Genotype 2
Genotype 2
Genotype 2
Genotype 2
Genotype 2

Condition

Condition 1
Condition 1
Condition 1
Condition 2
Condition 2
Condition 2
Condition 1
Condition 1
Condition 1
Condition 2
Condition 2
Condition 2

Two-way Analysis of Variance

Value
74.8
65
74.8
75.2
75
75.2
87.8
65
74.8
88.2
75
75.2



Two-way Analysis of Variance

Interaction plots: Examples

e 2 factors: Genotype (2 levels) and Condition (2 levels)

Single Effect

90 90
Condition Condition
— Condition 2 — Conditio
85 Condition 1 85 Conditio
80 80
@ 75 * @ 75
> >
70 70
65 65
60 60
Genotype 1 Genotype 2 Genotype 1 Genotype 2
Genotype Genotype

Genotype Effect Condition Effect



Two-way Analysis of Variance

* Interaction plots: Examples

e 2 factors: Genotype (2 levels) and Condition (2 levels)

90

85

80 1

70

65 7

60 7

Zero or Both Effect

90

nditio B Condition
ndition 1 85 x Condition
80
[
2 . x

70

85

80

Genotype 1

Genotype 2 Genotype 1 Genotype 2

Genotype Genotype

Zero Effect Both Effect



* Interaction plots: Examples

2 factors: Genotype (2 levels) and Condition (2 levels)

90
85

80

70
65

60

Two-way Analysis of Variance

Interaction

90
Condition Condition
Condition 1 a5 Condition 1
—— Condition 2 — Condition 2
80
3
x E 75
70
65
60
Genotype 1 Genotype 2 Genotype 1 Genotype 2

enotype




Two-way Analysis of Variance

Example: crop.density.csv

* Want to know if planting density (1=low density, 2=high density) or fertiliser type (1,
2, or 3) have an impact on crop yield

* Three null hypotheses:
« No difference in yield for any fertiliser type
« No difference in yield for either planting density

 Effect of fertiliser type or density on yield does not depend on the effect of the other
variable

https://www.scribbr.com/statistics/two-way-anova/



Exercise: One-way ANOVA: Data Exploration
crop.density.csv

 Want to know if planting density (1=low density, 2=high density) or fertiliser
type (1, 2, or 3) have an impact on crop yield

* Graphically explore the data

» effect of density only Crop <- Crop v>%
. mutate (density= factor (density),
» effect of fertiliser only fertilizer = factor (fertilizer))

o effect of both

* Check the assumptions visually (plot+gqgplot) and formally (test)



Crop %>%

1794

178

yield

177 4

176

ggplot (aes (density, yield))+
geom boxplot (outlier.shape = NA)+
geom jitter (height=0, width=0.1))

Two-way Analysis of Variance

* As always, first step: get to know the data

1799

Crop %>%

ggplot (aes (fertilizer, yield))+
geom boxplot (outlier.shape = NA)+
geom jitter (height=0, width=0.1)

1784

. -n
yield

176

2
density

3
fertilizer



Two-way Analysis of Variance

As always, first step: get to know the data

crop %>% ggplot (aes(density, yield))+
geom boxplot (outlier.shape = NA)+
geom jitter (aes(density, yield, colour=fertilizer),
height=0, width=0.1, size=4)

1794

1784

fertilizer

®
¢ L
® ® 2
® 3
e
.

yield

177

176 ° °
crop %>%

density

yield
R
[ [

S

%
®
177 N : >
e :
e @ @ @
*
>*
176 | - s
™
™
1 2
fertilizer
ggplot (aes (fertilizer, yield))+

geom boxplot (outlier.shape = NA)+
. geom jitter (aes(fertilizer, yield, colour=density),
height=0, width=0.1, size=4)

density

o1
® 2



Crop

(@) o
5>

Two-way Analysis of Variance

ggplot (aes (x=fertilizer,
geom boxplot (show.legend
geom jitter (height=0, width=0.2,

facet grid(cols=vars(density))+
scale fill brewer (palette="Dark2")

yield

1794

178

1774

176

y=yield, fill=fertilizer))+
= FALSE, outlier.shape = NA)+
size=5, alpha=0.5, show.legend
1 2
* ®
® ®
@ @
® @
®
®
®e0
®

2 3
fertilizer

FALSE) +



Two-way Analysis of Variance

(@) o
5>

cCrop ggplot (aes (x=density, y=yield, fill=density))+
geom boxplot (show.legend = FALSE, outlier.shape = NA)+
geom jitter (height=0, width=0.1, size=5, alpha=0.5, show.legend

facet grid(cols=vars(fertilizer))+
scale fi1ll brewer (palette="PuOr")

1 2 3

1794 ®

1784

yield
C
&

1777

176 L

density

FALSE) +



model

Two-way Analysis of Variance
Checking the assumptions
<- aov(yield ~ fertilizer*density, data = crop)
ggggplot (residuals (model)) + theme bw ()

Sample
(==

First assumption v’




Two-way Analysis of Variance
Checking the assumptions

Crop %>%
group by (fertilizer, density) %>%
shapiro test(yield)

model <-
aov (yield ~ fertilizer*density,
data = crop)

shapiro test (residuals (model)) # A tibble: 6 x 5
density fertilizer variable statistic p
. <fct> <fct> <chrs <dbl> <dbl>
# A tibble: 1 x 3 . 1 1 yield 0.937 0.315
variable statistic p.value 2 1 yield 0.972 0.865
sl capie s =anis 1 2 yield 0.942 0.373
residuals(model) 0.985 0.360 2 2 yield 0.948 0.466
1 3 yield 0.943 0.390
2 3 vield 0.970 0.842

First assumption v’

Crop %>%
levene test(yield ~ fertilizer*density)

Second assumption v/

e A P -
ST <THE> <@ e <abls

dfl df2 statistic p

3 90 0.159 0.97



Two-way Analysis of variance

Let’s do it
* Run the first step of the ANOVA

data %>%

anova test (y ~ factorl + factor2 + factorl*factor2)

* Run the second step (post-hoc tests) . I
data %>% Lo + +$#
tukey hsd(y ~ factorl*factor2) . R

* Run post-hoc tests by fertiliser and density

e Extra task: plot the stats results on the graphs

|

density




Crop

anova test(yield ~ density + fertilizer + density*fertilizer)

(@) (@)
5>%

Two-way Analysis of Variance
Omnibus test

ANOVA Table (type II tests)

Effect DFn DFd F p p<.05 ges
1 density 1 90 15.195 0.000186 % (0,144
2 fertilizer 2 90 9,001 0,000273 % 0,167
E[denaity:fertilfzer 2 90 0.635 G.SEEGGG] 0.014
1 2
179
]
@ @
178 ® @
@ ]
- [ ]
= @
177 .
]
1761 o9
]

1 2 3

fertilizer

1

yield

1797

176

Gives same results as
density*fertilizer

but explicitly specifies

2

3

1

density

2




Crop 3>%
tukey hsd(yield

Term

Two-way Analysis of Variance

Post-hoc tests

~ fertilizer*density)

Gives all comparisons, can be too

much: overcorrecting!

groupl group2 null.value estimate conf. low conf.high

p.adj p.adj.signif

<chr:> <chr> <chr> <db 1> <db ] > <db 1> <dh I > <db > <chrs
fertilizer 1 2 0 0.176 -0.170 0.522 0.448 ns
fertilizer 1 3 0 0.599 0.253 0.945 0.000239 Bl
fertilizer 2 3 0 0.423 0.0771 0.769 0.0124 #
density 1 2 0 0.462 0,227 0.697 0.000186 e
fertilizer:density 1:1 2:1 0 0.339 -0.259 0.936 0.568 ns
fertilizer:density 1:1 3:1 0 0. 696 0.0983 1.29 0.0129 -
fertilizer:density 1:1 1:2 0 0.635 0.0372 1.23 0.0307 -
fertilizer:density 1:1 2:2 0 0.649 0.0508 1.25 0.0254 -
fertilizer:density 1:1 3:2 0 1.14 0.539 1.73 0.00000438 #ww=
fertilizer:density 2:1 3:1 0 0.357 -0.240 0.955 0.509 ns
fertilizer:density 2:1 1:2 0 0.296 -0, 302 0.894 0.701 ns
fertilizer:density 2:1 2:2 0 0.310 -0.28B8 0.908 0.659 ns
fertilizer:density 2:1 3:2 0 0.798 0.201 1.40 0.00257 o
fertilizer:density 3:1 1:2 0 -0.0811 -0.659 0.537 1 ns
fertilizer:density 3:1 2:2 0 -0.0475 -0.645 0.550 1 ns
fertilizer:density 3:1 3:2 0 0.441  -0.157 1.04 0.272 ns
fertilizer:density 1:2 2:2 0 0.0136 -0.584 0.611 1 ns
fertilizer:density 1:2 3:2 0 0. 502 -0.0955 1.10 0.152 HSg////
fertilizer:density 2:2 3:2 0 0.489 -0.109 1.09 0.174 ns




Two-way Analysis of Variance
Post-hoc tests by density level

More specific — fewer unnecessary comparisons

Crop %>%
group by (density) %>%
emmeans test (yield ~ fertilizer,

1791

p.adjust.method = "bonferroni") ®
178
®
o ®
(7]
# A tibble: 6 x 10 vl @
density term LY. groupl qroup? df statistic p/p.adj p.adj.sfgﬂ%\ ¢
<fct> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbi>| <dbl> <chr>
1 fertilizer yield 1 2 90 -1.65 0.102  |0.307 ns
1 fertilizer yield 1 3 o0 -3.39 0.00104 |0, 00311 *= 176
1 fertilizer yield 2 3 a0 -1.74 0.0851 [0.255 ns
2 fertilizer yield 1 i 80 -0.0665 0.947 |1 ns
2 fertilizer yield 1 3 80 -2.45 0.01e4 (0.0491 =
2 fertilizer yield 2 3 80 -2.38 D.0194 QGSEE ns

fertilizer




Two-way Analysis of Variance
Post-hoc tests by density level: with p-values on graph

1 2
180 1 p=0.0582
=0.0491
crop %>% FJEE_T |
: o0 179 p =0.2554 ®
group by (density) $%>% oot
R— . . . p: !
emmeans test (yield ~ fertilizer, ' p=03073 | ° o
p.adjust.method = "bonferroni") %>% 178 'y st
add xy position(x = “fertilizer") 3%>% © ®
ungroup () -> results.density ” @
177 ®
176 '® ®
®
crop %>% |

1 2 3 1 2 3

ggplot (aes (x=fertilizer, y=yield))+ fertiizer

geom boxplot (linewidth=1, aes(fill = fertilizer, alpha=0.5), show.legend = FALSE,
outlier.shape = NA)+

geom jitter (height=0, width=0.2, size=5, alpha=0.5, show.legend = FALSE)+

facet grid(cols=vars (density))+

# ubr package #
scale fi1ll brewer (palette="Dark2")+ 88pP P g
stat pvalue manual (results.density, label = "p = {round(p.adj, digits=4)}")



Crop

Q Q
5>%

group by (fertilizer)

Two-way Analysis of Variance
Post-hoc tests by fertilizer

Q Q
5>%

emmeans test(yield ~ density, p.adjust.

fertilizer term Y.

1
2
3

<chr>
density yield 1
density yield 1
density yield 1

I I
o g g oy v
< LIri -~ <Lrilf =

groupl group2

<CIr=

2
2
2

df statistic

<db [
a0
a0
a0

1797

176

method = "bonferroni")

p p.adj(p.adj.signi

<dbl> <dbl> <dbl>| <chr>
-3.0% 0.00264 0.002564) =%
-1.51 0.135 0.135
-2.15 0.0343 0.0343
1 2 3
®
®
®
®
N °
®
®
®
®
®

: 2 1 2
density



Two-way Analysis of Variance
Post-hoc tests by fertilizer with p-values on graph

Crop %>%
group by (fertilizer) %$>%

emmeans test (yleld ~ density, p.adjust.method = "bonferroni")$>%
add xy position(x = "density") %>% 1 2 3
ungroup () -> results.fertilizer fﬁﬁ@1
1794
p = 0.0026
® p=01347
1781 %
®
2
177 4
176 1 @
@
Crop %>%

ggplot (aes (x=density, y=yield))+ 1 ’ " density 1 ’
geom boxplot (show.legend = FALSE, outlier.shape = NA, aes(fill=density))+

geom jitter (height=0, width=0.1, size=5, alpha=0.5, show.legend = FALSE)+
facet_grid (cols=vars (fertilizer))+ # ggpubr package #
scale fill brewer (palette="PuOr")+

stat pvalue manual (results.fertilizer, label = "p = {round(p.adj, digits=4)}")



Two-way Analysis of Variance

* Now a quick way to have a look at the interaction

fertilizer density mean
o T <alb T =

Crop %>%
group by (fertilizer, density) %>%
summarise (mean=mean (yield) )
-> Crop.summary

ol R R
(I SO N SR R SO
R e e
e B e Bt B |
[ e e B e B 1 |

1776

Crop.summary 3s>%
ggplot (aes (x=fertilizer, y= mean,
colour=density, group=density))+
geom line(size = 1)+
geom poilnt(size = 3)

17737

* v density

177.07 1
- 2

mean

176.7

176.4 1

0o

2
fertilizer
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Association between 2 continuous variables
One variable X and One variable Y
Linear relationship
Correlation and Regression




Quantitative variable

Group 1

[ ‘ Absolute difference ‘

Group 2

Signal-to-noise ratio

Signal
Difference (signal) Noise
Variation (noise) Signal

Noise

= statistical significance

no statistical significance



Signal-to-noise ratio and Correlation

Difference (signal)

Variation (noise)

* For correlation, signal is similarity of behaviour between variable x and variable y

Similarit Signal
 Coefficient of correlation: r = : ”y = g.
Variability Noise

Covariance
Similarity C()ny ./

Variability - SDxSDy'\

r=

Standard Deviation



Correlation

* Most widely-used correlation coefficient:
e Pearson product-moment correlation coefficient: r

* The magnitude and the direction of the relation
between 2 variables

* Designed to range in value between -1 and +1
* Often look for >|0.6 |

* Coefficient of determination: r2

* Gives the proportion of variance in Y that can be
explained by X

* Helps with the interpretation of r
* Basically the effect size

0.025 |-

/ I ;J.Igc:sl 0.80 | 0.40
f / 0.76 | 0.38 | 0.029
0.0046:5
0.03

Coefficient Strength of
(+ve or —ve) relationship
0.0t0 0.2 Negligible

0.2to 0.4 Weak
0.4t00.7 Moderate

0.7t0 0.9

09to 1.0

Strong

Very strong




Variable 2

p = 0.0002
r=0.34 @

50 100 150
Variable 1

200

Correlation

Variable 2
bo S

p =0.04

r=-0.83

r2=0.68

BIGY®

o [r=-0.83,p=004r2=68%)

16 18 20 22 24 26 28 30 32 34

Power!!

Variable 1



Correlation: Assumptions

Pearson correlation is a parametric test for linear relationships
First assumption for parametric test: Normality
Correlation: bivariate Gaussian distribution

Variable Y
®» o

16 18 20 22 24 26 28 30 32 34
Variable X

Symmetry of the values on either side of the line of best fit.



Correlation and regression

Line of best fit comes from a regression
Correlation: nature and strength of the association

Regression: nature and strength of the association and prediction

244
24
221
>_
2D 20;
QO
8
3 1s
>18
161
14— T y . . . . T T ' 14— T T T . T . T . ]
16 18 20 22 24 26 28 3.0 32 34 16 18 20 22 24 26 28 3.0 32 34
Variable X Variable X
Correlation = Association Regression = Prediction

Y=A*X+B




Correlation
treelight.csv

Amount of light in a tree



Correlation: treelight.csv

e Question:
e What is the nature and the strength of the relationship between depth and light?

5000 - .
»
L
L
Read in the data and create initial plot .
4000 -
read csv("treelight.csv") -> treelight =
o)) L
treelight %>% ggplot (aes (Depth, Light))+ - .
. . 3000 - .
geom point (size=3, colour="greend") .
»
& L
2000 -
&
2?5 5ID ?75 1EI+.D

Depth



Correlation: treelight.csv

e Question:
e What is the nature and the strength of the relationship between depth and light?

5000 - .
»
»
L
# rstatix package # .
4000 A
treelight %>% =
cor test (Depth, Light) 2 *
) ) 3000 1 *
A Tibble: 1 X o o ] . »
varl wvar2 cor statistic p conf.low conf.high method
<chrs> <chir> <dbl> <db ] b [ > <db > <db 1> <chir: pt »
Depth Light -0.85 -5.27 0.000263 -0.4953 -0. 554 Pearson
2000 7
»
25 5.0 75 100

Depth




Correlation: treelight.csv

e Next we want to add a line of best-fit: Y = A + B*X

5000 - °

P

Y=intercept + slope*X

Light

2000 7

2.9 2.0 7.5 10.0



Correlation: treelight.csv

"« For the line of best-fit: 3 new functions )
Im(y~x, data=) -> fit Core R
coefficients (fit) -> coef.fit (vector of 2 values)

\geom;abline(intercept=coef.fit[1], slope=coef.fit[2]L)

With the tree data:

Im(Light ~ Depth, data=treelight)-> fit.treelight
coefficients(fit.treelight) —-> coef.treelight
coef.treelight

(Intercept) Depth

5013, QR?2 _2707.1614 coef.treelight[1]
(Intercept)

intercept slope 5013.982



Correlation: treelight.csv

treelight %>%
ggplot (aes (x=Depth, y=Light)) +
geom point (size=4, colour=%“greend") +
geom abline (intercept = coef.treelight[l], slope = coef.treelight[2])

2000 7

4000

Light

3000 7

2000 1

25 5.0 75 10.0
Depth



Correlation: treelight.csv

5000 7
summary (fit.treelight)

Line of best fit: Y=5013.98 — 292.16*X

call:
Tm(formula = Light ~ Depth, data

4000 1
treelight)

Residuals:
Min 10 Median M ax
-819.9 -330.5 -192.3 431. 1014.1

Light

3000 1

Coefficients:

Estimate Error © value Pri=|t|)

342.15 = e
55.41 ([-5.272)0.000263 w**

T 0.01 %' 0,05 .7 0.1 T 1

{Intercept)
Depth

2000 1

29 Egepﬂ1 = 100 signif. codes: O

: on 11 degrees of freedom
. Adjusted R-squared: 0.6907

treelight %>%
( ard 11 DF, p-value: 0.0002633

cor test (Depth, Light)

# A tibble: 1 x 8
varl wvarld cor
- .."__.'I:-.'."-_.'-“' = f.‘i-.'."'- o ﬂl."_:'-' -;

Depth Light (-0. 85

onf.low conf.high method

statisti p
<db ] <db I <db J> <dbl> <chr:>
-3.27)0.000263 -0.953 -0.35334 Pearson




Correlation: Other considerations
Outliers and High leverage points

* If have outlying points and/or you are interested in fitting the best line for your data
overall, there are more considerations

* QOutliers: the observed value for the point is very different from that predicted by the
model. 110,

—- 5000; o

1001 i

4000;

90+

3000

80 —+

2000+

: 1000 r . . . .
60 ' ' 0 2 4 6 8 10




Correlation
Error a.k.a. Distance a.k.a. Residual

* QOutliers: the observed value for the point is very different from that predicted by the
model = big residual

5_

5000, o

Residual .

4000

Distance 1000,

- \

Error 2000

Continuous variable

1000
0




Correlation
Outliers and High leverage points

* Leverage points: A leverage point is defined as an observation that has a value of x that is
far away from the mean of x. A point with high leverage has the potential to dramatically
impact the model.

* Outlier: high discrepancy: a point has an unusual y-value given its x-value

5000, °
4000

3000/

20007

1000
0



Correlation

Outliers and High leverage points

Variable Y

60
)
....
40
e o
) )
e O
J . .
20 °
°®
(0f ) r ' . , .
0 2 4 6 8 10
Variable X

All good



Correlation
Outliers and High leverage points

60
Outlier
_ . . _ .
unusual y-value given its x-value T
> 40 o
(]
9 o o
T o o
= o o
> 20 ° o
O
o ..
<
o
(0F . . . , .
0 2 4 6 8 10
Variable X

Outlier but not influential value

60; @® With outlier
@ Without outlier
> 40
Q
o
©
G
>
207
(0F ' r T
0 2 4 6
Variable X

10



Correlation
Outliers and High leverage points

High leverage

70
°
value of x far away from the mean of x
601
50+ [ ]
> %0
D 40
240
L [ I
< 30 o o
> .o ®
20+ 1.
°
104 o
°®
0} . . . . . . .
0 2 4 6 8 10 12 14
Variable X

High leverage but not influential value

70;

(o))
o

Variable Y
ol
Q

™)
Q

[ERN
2

N
e

w
Q

@ With high leverage point ®
1 @ Without high leverage point
2 4 6 8 10 12 14
Variable X



Variable Y

\l
Q@

o)
Q

Ul
Q

N
Q

)
Q

N
Q

[EY
Q

Correlation
Outliers and High leverage points

Outlier + high leverage

4 6 8 10 12 14
Variable X

Outlier and High leverage: Influential value

Variable Y

703

@ With outlier+high leverage

601 @ Without outlier+high leverage
503
401
30:
20:
101
0o® . . . . . .
0 2 4 6 8 10 12
Variable X

14



Correlation

Outliers and High leverage points =
Influential observation

* One way to identify influential observations: the Cook’s distance:
 Combination of each observation’s leverage and residual values

* Higher leverage and residuals = higher Cook’s distance = more likely an influential
observation
* Summarizes how much all the values in the regression model change when the iy,
observation is removed. prediction for observation j, when the fit does

prediction for observation j from full model \ / not include observation i

n L
Sum of squared differences — Z_, } } ]
+

(p

[t
\ the estimated variance from the fit, based on all
the number of regression coefficients

observations, i.e. Mean Squared Error

(predictors)



Correlation

Outliers and High leverage points =
Influential observation

* Consensus: Cook’s distance D > 1 (0.5): likely to be an influential value

* “Observation which deviates so much from other observations as to arouse suspicion it was
generated by a different mechanism” — Hawkins (1980)

 Classic method to find influential points is to compare the fit of the model with and
without the outlying point

https://lymilynn.medium.com/a-little-closer-to-cooks-distance-e8cc923a3250



https://lymielynn.medium.com/a-little-closer-to-cooks-distance-e8cc923a3250

Correlation
Residuals to deal with dodgy values

* Consensus: standardised residual > 3: likely to be an outlier

 Classical way to identify outliers is to look at the residuals
* A value with a big residual is poorly fitted by the model

5000, o

4000

Residual

= 3000

Distance /
20007 o

Error 000! °



Correlation: correlation.csv

e Questions:
e What is the nature and the strength of the relationship between X and Y?
e Are there any dodgy points?

60

bl
®
®

201 L

variable.x



Correlation: correlation.csv

e Question: are there any dodgy points?

read csv ("correlation.csv'") -> correlation

correlation %
ggplot (aes (x=variable.x, y=variable.y)) +
geom point (size=5, colour="sienna2")

>%
X

1D variablg_._)_:; wari.r:lI::nlg.),,_r

50 1 0.10000 -0.0716

2 0.45401 4.1673

RPN 3 1.09765 6.5703

>40- . 4 1.27936 13.8150
8 R 5 2.20611 11.4501
g . |o 6 2.50064 12.9554
20 ., ¢ 7 3.04030 20.1575

° e 8 3.23583 17.5633

. 9 4.45308 26.0317

o] 10 4.16990 22.7573

variable.x

I-10 of 23 rows



Correlation: correlation.csv

Ilm(variable.y ~ variable.x, 7

data=correlation)-> fit.correlation
coefficients(fit.correlation) ->
coef.correlation

I
(=)
I

201
-
correlation %>% i 5 variable.x N
ggplot (aes (x=variable.x, y=variable.y, label = ID)) +
geom point (size=3, colour="sienna2") +
geom abline (intercept = coef.correlation[l], slope = coef.correlation[2])+

geom text (vjust = 1.3, nudge x = 0.2)



variable.y

correlation %>
ggplot (aes (x

[l oo

geom text (vjust

Correlation: correlation.csv

variable.x,
geom point (size=5, colour="sienna2")
geom abline (intercept
= 1.3, nudge x

y=variable.y, label = ID)) +
+

coef.correlation[l], slope = coef.correlation[2])+

0.2)

60 q

E
(=]
1

201

22

variable.x

10

How good is the fit?
summary (fit.correlation)

Correlation?
correlation %>%
cor test (variable.x, variable.y)



60 7

&
(=1
1

Correlation: correlation.csv

22

201
ol
0 5 10
variable.x
Correlation?
correlation %>%
cor test(variable.x, variable.y)
yg_rl }.{_;_1_(2 cor statis_git;
variable.x variable.y

P

conf.low

5.764871 [ 1.01e-05 | 0.5471597 0.9034793 Pearson

How good is the fit?

summary (fit.correlation)
Line of best fit: Y=8.38 + 3.59*X

data = correlation)

call:

Tm(formula = variable.y ~ variable.

Residuals:
Min 1Q Median Ma x
-40.034 -3.414 0.867 23 17.265

Coefficients:

Estimate d. Error t value Pr(>|t])
(Intercept) 8.3798 4.1195 2.034 0.0548 .
variable. x 3.5888 0.6225 5.765 1.01e-05 #**%*
Signif. codes: 0 ‘***' Q0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 °

Residual standard error: 10.93 on 21 degrees of freedom
Multiple R-squared: | 0.6128, Adjusted R-squared: 0.5943
anc

F-statistic: 33.23 on 1 DF, p-value: 1.0le-05

conf.hi_:g_h:_ mgthod

1



Residuals

\f |Standardized residuals|

Correlation: correlation.csv

Assumptions, outliers and influential cases

gglm(fit.correlation, theme = theme bw(base size = 16))
Linearity, homoscedasticity and outlier Normality and outlier
Residuals vs Fitted Normal Q-Q # gg 1m packag e #
20
0t----- o_____ T SR NS SU—— ——— % 0 "*.lf“';t.
o 0. v
D - .
N
201 B 1
=
5 3
40 | | R | | | |
20 40 — &0 = 1 0 1 2
Fitted values Theoretical Quantiles
Scale-Location Residual vs. Leverage
Homoscedasticity § 1 Inﬂuential cases
; o
15 E 0- o
1.0 E : |
2o
0.5 E 34
® (-]
2I[} 4I[} BI[} a [}:1 0:2 —

Fitted values Leverage



Correlation: correlation.csv

Assumptions, outliers and influential cases

par (mfrow=c(2,2))

plot (fit.correlation)

Core R

&0

£
=
i

variable.y

204

22

variable.x

Residuals

IStandardized residualsl

Linearity, homoscedasticity and outlier

-20 o 10 20

-40

20

05 1.0 1.5

0.0

Residuals vs Fitted

<21

10 20 30 40 50 B0

Fitted values

Homoscedasticity
Scale-Location —
230
021
) ooo
Ty o o
o, < *

[ [ | [ [ [
10 20 30 40 g0 g0

Fitted values

Standardized residuals

Standardized residuals

Normality and outlier

Q-Q Residuals
| 212
- Q-Q_o__ogzo"
(500-
_ oac}@wﬁ
g
] L
r o2
I [ [ [ |
-2 -1 0 1 2
Theoretical Quantiles
Influential cases
Residuals vs Leverage
N o3l STl -
— o 22

Cook's distance
[ [ [ | [ [
0.00 0.05 0.10 015 0.20 0.25

Leverage



Correlation: correlation.csv

w322

60

variable.y
I
=
1

[
]
|

variable.x

Have a go: Remove ID 23, then re-run the model and plot the graph again.
Hint: you may need cooks.distance () rstandard() and filter ()



Correlation: correlation.csv

(gboks.distance(fit.correlation)—> cook
rstandard (fit.correlation)-> residual

correlation %>%
add column (cook) $>%
(residual) -> correlation

\\add_column

~N

Filter
[[n] variablexx variable.y cook " residual
( 1 23 13.00000 15.0000 2517207e+00  -4.1 EDEEEJ.EJ
2 22 14.00000 G2.0000  1.950580s-01 1.00250604
3 21 4,00000 400000 7.044933=-02 1.62105018
4 1 0.10000 -00716 6.057002e-02  -0.BG323362
5 18 371607 50.0568

4073005e-02 | 0029 ?5!538)

correlation %>%
filter (cook<l) -> correlation.23

Im(variable.y ~ variable.x, correlation.23)

summary (fit.correlation.23)

607

.
=]

variable.y

o
=

variable.x From r2 = 0,6128

-> fit.correlation.23

Residuals:
Min 1Q Median 3Q

Coefficients:
Estimate std. Er

call:
//:;;formu1a = variable.y ~ variable.x, data = corre1ation.2;;\\\

Max

-5.049 -2.784 -1.446 1.679 16.915

ror t value pPr(>|t]|)

(Intercept) 3.7103 1.8338 2.023 0.0566 .
variable.x 4.8436 0.2971 16.303 5.13e-13 #%%*
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 °

95 on 20 degrees of freedom

Residual standard erfor: 4.6

0 DF p-value: 5.13e-13

Adjusted R-squared: 0.926y

"1




Correlation: correlation.csv

cooks.distance (fit.correlation)-> cook

rstandard (fit.correlation)-> residual b variable.x variable.y cook residual
correlation (23 13.00000 15.0000 2.517207e+00  -4.16060845 |
22 14.00000 £8.0000 1.950580e-01 1.00880654
[¢)
add column >% 21 4.00000 40.0000  7.044938e-02 1.62105018
add column Sldual) -> correlation 1 0.10000 -0.0716 6.057002e-02 -0.86823862
- 18 8.71607 50.0568  4.073005e-02 0.98975608
correlation
filter (cook<l) -> correlation.23

Im(variable.y ~ variable.x, correlation.23)-> fit.correlation.23

summary (fit.correlation.23)

variable.y

607

.
=]

o
=

call:

Tm(formula = variable.y ~ variable.x, data = correlation.23)

Residuals:
Min 1Q Median 3Q Max
-5.049 -2.784 -1.446 1.679 16.915

Coefficients:

Residual standard er

From r2=0.6128

Estimate Std. Error t value Pr(>|t|)

or: 4.695 on 20 degrees of freedom
ke Adjusted R-squared: :

0 DF, p-value:

(Intercept) 3.7103 1.8338 2.023 0.0566 .
variable.x 4.8436 0.2971 16.303 5.13e-13 #%%*
Signif. codes: 0 ‘*%%’ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.

) 0.1 i ) l

0.9265

5.13e-13



Correlation: correlation.csv

coefficients(fit.correlation.?23) -> coef.correlation.2?23

correlation.23 %>%
ggplot (aes (x=variable.x, y=variable.y, label = ID)) +
geom point (size=, colour="siennal") +
geom abline (intercept = coef.correlation.23[1], slope = coef.correlation.23[2])+

geom text (vjust = 1.3, nudge x = 0.2)

60

o
<
1

variable.y

[~}
o
1

Fromr=0.78

correlation.23 %>%

cor test(variable.x, Xariable.y) . T -
= variable.x
varl varz cor ktatistic p conf.low conf.high method
<chr> <chr> b 1> <db 1> <db > <db 1> <dbl> <chr>

variable.x variable.y 16.3 5.13e-13 0.915 0.985 Pearson



Correlation: correlation.csv
Let’s add confidence bands to the graph

* Confidence interval 2 how well we have determined a particular parameter
e.g. mean or coefficient of regression

60 7

£
=]
1

variable.y

(]
=]
1

variable.x



Correlation: correlation.csv
Let’s add confidence bands to the graph

correlation.23 %>%
ggplot (aes (x=variable.x, y=variable.y, label =
geom point (size=4, colour="sienna2l") +
geom abline (intercept = coef.correlation.23[1],
geom text (vjust = 1.3, nudge x = 0.2)+
geom smooth (method=1lm, fill="red", alpha=0.1)+

ID)) +

slope

scale x continuous (breaks=seq(from=0, by=2, to=20))+
scale y continuous (breaks=seq(from=0, by=10, to=80))

21 falls well outside
confidence bands

v

ﬂ

201

ariable.y
iy
(=]

701

60

o
[=]
1

coef.correlation.23[2])+

0 2 4 6 8 10 12 14
variable.x



gglm(fit.

Correlation: correlation.csv
Let’s take care of ID 21

correlation.23, theme = theme bw(base size
Residuals vs Fitted Normal Q-Q
N\
L 0
15 © 5
o
@ 107 Q 2-
g o
.-g i _c 1 -
o T 01
e O I I _g + .’,.,o’;.
8 44 -
w
-5 A I ] I | . |
20 40 60 -2 -1 0
Fitted values Theoretical Quantiles

Scale-Location

2.0 l’ = ‘|

)
©
5
.a 1_5-
]
L ==
pe]
@ e
N 107 . .
P
_g W
] ol =
§ 05 .
w0
B ad
20 40 60
Fitted values

Standardized Residuals

16))

p a8
-4

@

Residual vs. Leverage

1

C

01

0.2

Leverage

0.3



Correlation: correlation.csv

par (mfrow=c (2, 2))
plot(fit.correlation.23)

Let’s take care of ID 21

Residuals

+|Standardized residuals!

15

10

0.5 1.0 1.5

0.0

Residuals vs Fitted

o2

Fitted values

KAQaIE-Locati on
w2

2

o

T T I I T I T
10 20 30 40 50 60 70

Fitted values

Standardized residuals

Standardized residuals

Q-0 Residuals
212
0.0
QG.@H@"
el
o 9_@0'{)6’ ©
o1a 012
T | T T |
-2 -1 0 1 2
Theoretical Quantiles
Residuals vs Leverage
Y
N -
@21 A
- H“ama
o
(=¥
8%
00000 O
° =°

000 005 010 015 020 025 030 035

Leverage




Correlation
Residuals to deal with dodgy values

* Consensus: standardised residual > 3: likely to be an outlier

Classical way to identify outliers is to look at the residuals
A value with a big residual is poorly fitted by the model
Residuals can be positive or negative — look at absolute

5000, o

4000
Residual

= 3000

Distance /
20007 o

Error 000! °




Correlation: correlation.csv
Let’s take care of ID 21

rstandard(fit.correlation.23)
cooks.distance (fit.correlation.23)

o

correlation.23 %$>%

-> residual?23
-> cook23

select (-cook, -residual) %>%

add column (cook23) %>%

add column (residual23) %>%

filter (abs (residual23) < 3) -> correlation.23.21

ID variable.x variable.y residual?3 cookZ23 -

1 ( 21 4.00000 40,0000 369795678  3.67061%9e-01 J
2 22 14.00000 &4.0000 -0.93557418  2.43533%e-M
3 1 0.10000 -0.071¢€ -0958462563 8.449122e-02
4 4 1.27936 13.8150 085030344  4,599235e-02
5 18 a. 71607 50.0568 092478700  4.528413e-02
= 14 B REEMER 2 OTTe 1 ANSSTETN 2 S1IMNANa M7



Correlation: correlation.csv
Let’s remove ID 21 as well

Ilm(variable.y ~ variable.x, correlation.23.21) -> fit.correlation.23.21
summary (fit.correlation.23.21)

0.995 Pearson

varl var?2 cor)statistic p conf.low conf.high method
. <chr> <chr:> <db > <dbl> <db 1> <db = <dbl> <chr>
.23. $>% = :
correlation.23.21 %>% variable.x variable.y | 0.99 28.7 4.23e-17 0.972

cor test(variable.x, variable.y) -

call: From r =0.96

Im{formula = variable.y ~ variable.x, data = correlation.23.21)

Residuals:
Min 10 Median 3Q Max
-4.3636 -1.8607 -0.5376 2.2987 5.0434

Coefficients:
Estimate Std. Error t value Pr(=|t]|)

(Intercept)  2.4679 1.0757 2.294 0.0333 =
variable.x  4.9272 0.1719 28.661 <2e-16 *=%
From r2 = 0.93 Signif. codes: 0 “*%%’ 0.001 “**’ 0.01 ‘#’ 0.05 “.’ 0.1 * ° 1

Residual stan
Multiple R-squared:
F-statistic: 821.4

rror: 2 709 on 19 degrees of freedom
Adjusted R-squared: 0.9762

on 19 DF, p-value: < 2.2e-16



variable.y
—_ %] (%] [y [w)] b |
o [ o o o o

=]
1

Correlation: correlation.csv
Finally

=y
=]
1

r=0.99 p=4.23e-17,r2 = 98%

0 2 - 6 8 10 12 14

variable.x



Correlation: correlation.csv
Final code for pretty graph

correlation.23.21%>%
ggplot (aes (x=variable.x, y=variable.y, label = ID)) +
geom point (size=4, colour="sienna2") +
geom abline (intercept = coef.correlation.23.21[1], slope = coef.correlation.23.21[2])+
geom text (vjust = 1.3, nudge x = 0.2)+
geom smooth (method=1m, se=TRUE, level=0.95, fill="red", alpha=0.1)+
scale x continuous (breaks=seq(from=0, by=2, to=20))+
scale y continuous (breaks=seq(from=0, by=10, to=80))+
annotate (geom="text", label="r = 0.99, p = 4.23e-17, r2 = 98%", x=10, y=6, size=10,colour="darkblue")

701

@
=}

Depends on what your aim is:

e If want to predict, want the best model

* |f want to best represent your data,
might not want to exclude

Beware of overfitting

N 23
=) =}

variable.y

w
=]

201

r=0.99, p=4.23e-17,r2 = 98%

0 2 4 6 8 10 12 14
variable.x
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Linear modelling is about language

Is there a difference between the cell lines?

10.0 1 °
™
™
i ® ®
3.0 = o
™
c
9 ® ®
2 «°
Q ° ™
=3 o, ®
© 104 o o ° 'Y é
® ._. ®
® o0 ®
® o *
o ® e ®
™
0.3 @
® ° ®
A B c D E

line

Can cell line predict expression?
Model(line) = expression



Simple linear model

Linear regression

Correlation: is there an association between 2 variables?

Regression: is there an association and
can one variable be used to predict the values of the other?

Variable Y
® O

[EEY
@

16 18 20 22 24 26 28 30
Variable X

32 34

Correlation = Association

Variable Y

24

)
n

N
Q

[ERN
@

AN
@

16 18 20 22 24 26 28 30 32 34

Variable X

Regression = Prediction
Y=A*X+B




Simple linear model

* Linear regression models the dependence between 2 variables:
a dependent y and a independent x
Model(x) =y

predictor

\y = lBO v B1I*X/

Model

response

* InR:
Linear regression: 1m ()



Linear regression

 Example: treelight.csv e %
treelight<-read csv("treelight.csv") jgﬁg iﬁ
. T 5000 .
* Question: how is light affected by the depth at
which it is measured? ®
. - % 4000 A *
light = B, + B, *depth
3000 1 =
. 2000
treelight %>% | | | !
ggplot (aes (x=Depth, y=Light) )+ 22 5S@m 1= 100

geom poilnt (colour="forestgreen", size=3)




Linear regression

coefficients (fit.treelight) -> coef.treelight

{(Intercept) Depth
treelight %>% 5013.9822 -292.1614
ggplot (aes (x=Depth, y=Light)) +
geom point (size=4, colour="“greend") +

geom abline (intercept = coef.treelight[l], slope = coef.treelight[2])

5000 7

4000 1

Light

30001

2000 7

25 5.0 75 10.0
Depth

light = 5014 - 292 *depth



The linear model perspective

00000

00000

00000

00000

00000

00000

Continuous predictor

Coyotes body length

Is there a difference between the 2 sexes?

becomes

Does sex predict coyote body length?

3
85 9

llllll

Categorical predictor




The linear model perspective
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Coyotes = Body length~sex

Protein = Expression~Cell line

Crop = Yield~Fertiliser and Density



Example: coyotes

* Questions: do male and female coyotes differ in size?
* Does sex predict coyote body length?
 How much of body length is predicted by sex?



Exercises: coyotes

* coyote.csv coyote <- read csv ("coyote.csv")
* Runthet-testagain t test ()
* Run the same analysis using a linear model approach 1m ()
 Compare the outputs and understand the coefficients from 1m ()
 Use summary () and anova () to explore further
* Work out R? from the anova () output
* Don’t forget to check the assumptions



The linear model perspective
Comparing 2 groups

read csv ("coyote.csv") -> coyote

coyote %$>%
ggplot (aes (x=sex, y=length, colour=sex)) +
geom jitter (height=0, size=4, width=0.2) +
theme (legend.position = "none")+
ylab ("Length (cm)")+
scale colour brewer (palette="Dark2")+
xlab (NULL) +

stat summary (fun=mean, fun.min=mean, fun.max=mean, geom="errorbar",colour="black", linewidth=1.2,

width=0.06)
.
°
° .
100 ¢ :‘ o
S ‘ege
B q: . -—4—?—‘:!——
S op- ___l—;‘h..—— .
5 ‘." 4 . ® :ﬂ-
e O ¢ o ®
° °
80 1 . X
°
.
°
70

female male



The linear model perspective
Comparing 2 groups

coyote %>%
t test (length~sex, var.equal=T)

Y. group1 group2 n n2 statistic _ df
length female male 43 43 -1.641109 84
® L ]
— 100 A
Im(length~sex, data=coyote) o e
L ]
Y
call: . 3

90 1 — 8 s

Im{formula = Tength ~ sex, data = coyote)

Length (cm)
®
00‘.
[ ]
oe%he

Coefficients: o o °*
{Intercept) sexmale
89.712 Z2.344 ¢

[ Females=89.71 cm, Males=89.71 + 2.34=92.05 ]




The linear model perspective
Comparing 2 groups

100 1 ¢ * % ...
Im(length~sex, data=coyote) o e S
® @
—_ L) Sy
call: E ’. 1. [ ] —‘T..—
Tm{formula = lTength ~ sex, data = coyote) £ ] 'oo

o AN
K e 2\ °
Coefficients: 0 .
{(Intercept) sexmale
89.712 2.344 o
\ \ 70 L ]

Body length = B, + B, *sex

_ [ 89.71 If Female
Body Length = ( ) ( If Male )

- 0 If Female
Body Length = 89.71 + ( > 344 ) ( If Male )

Body length = 89.712 + 2.344%sex



The linear model perspective
Comparing 2 groups

y =By + B *x continuous

treelight.csv

light = 5014 - 292*depth

categorical

coyote.csv

Body length = 89.712 + 2.344*sex

- 0 If Female
Body Length = 89.71 + ( 2 344 ) ( If Male )
vector /

\
Y= Bo"' Bl*x



The linear model perspective
Comparing 2 groups
Model

00000

o

T T
2 4 G 8 10
conifer$Depth

Residuals



The linear model perspective
Comparing 2 groups

linear.coyote<-1lm(length~sex, data=coyote)

linear.coyote © linear.coyote list [13] (53: Im) List of length 13
. , i coefficients double [2] 82971 2.34
{Ir‘lterceptj sexmale {Intercept) double [1] 89.71163
89,712 2. 344 coyoteSgendermale double [1] 2344186
O residuals double [86] .E 2291189329 -521 ..
110 1 J
105+ 86 coyotes
Y
®
1007 0 If Female
* % Body Length = 89.71 + :
. s y Leng 2.344 If Male
€ o o,
2 ® ’..
£ 90 . —
5 Female 1: 89.71 + 3.29 =93 cm
Q ® e 7y
— 857 ... .. length gender
.
80 ] S7-O—Ferrale
92.0 female
101.6 female
751 ° 93.0 female
84.5 female
70 - bt 102.5 female
97.8 female
fen‘;ale 91.0 female

98.0 female



The linear model perspective
Comparing 2 groups

coyote %>%
(length~sex, var.equal=T)

T test
Y. groupl group2 nt  n2 statistic  df P
length female male 43 43 -1.641109 84 0.105
®
° ¢ A
e L
c 100 ®
summary (linear.coyote) . "N K
° LI LK
_ S . a e
call: E _'_A_..l_. : $°®
Tm{formula = length ~ sex, data = coyota) ;fgg_ ® e » o0
. = ® L ]
Residuals: @ ® , P
Min 1q Median Ely] Max ® ®
-18.7116 -4.053358 0. 2884 3.9442 12,9442 80 * *e .
Coefficients: .
Estimate std. Error T wvalue Pri=|t|)
(Intercept)  89.712 1.010 88 820 2a-1f Meww 704 bd . .
sexmale 2.344 1.428 ll.ﬁ41 0.105] fermale male
signif. codes: O **%%" Q0,001 °**° 0.01 “*' 0,05 *." 0.1 ° "1

Residual standard error: 6.623 on 84 degrees of freedom
multiple R-squared: 0.03107, Adjusted R-squared: 0.019533
F-statistic: 2.693 on 1 and 84 DF,[ p-value: D.lDdS]




The linear model perspective
Comparing 2 groups

anova (linear.coyote)

Analysis of variance Table

Response: length
Dff sum 5q Mean sq F value Pr(=F)
Sex 115.1 118.147 2.6932 0.1045
Residuals 84 3684.9 )43.868 . .ps
About 3% of the variability

118.1 + 3684.9 = 3803: total amount of variance in the datz in body length is explained
Proportion explained by sex: 118.1/3803 by sex

summary (linear.coyote)

call:
Tm{formula = lTength ~ sex, data = coyote)

Residuals:
Min 1q Median 30 Max
-18.7116 -4.0558 0.2884 3.9442 12,9442

coefficients:

Estimate std. Error t value Pri=|t|)
{Intercept) 89.712 1.010 B88.820 <2e-16 %
sexmale 2.344 1.428 1.641 0.1

Signif. codes: QO “¥%%' 0,001 *#*%' 0.01

R? = coefficient of determination

Residual _standard error: 6.623 o

Multiple r-squared: D.OE‘»:LEJF, usted R-squared: 0.01953 = Va ria bility in y explained by X

F-statistic: Z.6%3 on I and 8 DF, p-value: 0.1045

Same as in correlation/linear regression



Coefficient of determination
An illustration: change in variability

[ variabilityl RZT p-valuel ]

R2=0.46, p=0.022 | R?=076,p=00005

25
Variable1



Coefficient of determination
An illustration: change in variability

[ variabilityl RZT p-valuel ]

R?=0.06,p=0.28

ml  R®=0.23,p=0.031

eeeeee

eeeeee

e R®=0.71, p=2.744e-06

eeeeee




Coefficient of determination
An illustration: change in sample size

120

length

-~ F
807 @

604

1204

120
_ @
® .
Py
*%
@ 100
@
o 100
o~F
®
% gender < gender
j=.)
B fﬁ;nlgle g ES female
o [@° = &5 male
%
=N

length

801

801

@

female

t-test

604
male

female male

t-test

* %k

(O ]

| n=258

gender

EZ female
B2 male

t-test
.y. groupl group2 nl n2 statistic df p .y. groupl group2 nl n2 statistic df p LY. groupl group2
<chr> <chr> <chr> <int> <int> <dbl> <dbl>|<dbl> <chr> <chr> <chr> <int> <int> <dbi> <dbl>| <dbl> <chr> <chr> <chr>
Tength female male 43 43 -1.64 84.0(0.105 Tength female male 86 86 -2.33 170.|0.0207 Tength female male

female

male

nl

129 129

n2 statistic
<int> <int>

df p
<dbl> <dbl> <db >
-2.86 256.(0.00452




Coefficient of determination
An illustration: change in sample size

SampIeT= PowerT mm) R? does not change but p-valuel

120

801

604

Coefficients:

l gendermale 2.344 l

%
® }ﬁ%
£ AL gender
5 3 e
é b r
®
®
o .
female male
Estimate std. Error t value Pr(>|t])
1.010 88.820 <2e-16 #%%*
1.428 1.641 0.105
Signif. codes: 0 ‘**%’ (0.001 ‘#**’ 0.01 “*’ 0.05 ‘.’ 0.1 *~

Residual standard er
Multiple R-squared:

F-statistic: 2.693 o

: 3 on 84 degrees of free
0.03107, Adj = :
4 DF, | p-value: 0.1045

dom
0.01953

1

1204

100+

Residual standard erre

Multiple R-squared: |0.03107,

F-statistic: 5.451 on and

84 on 170 degrees of

£ gender
j=.]
5 =
80
601
female male
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 89 712 0.710 126.355  <2e-16 #%**
[genderma1e 2.344 ] 1.004 2.335  0.0207 *
signif. codes: 0 ‘***’ 0.001 ***’ 0.01 **’ 0.05 *.” 0.1 °*

120

length

Coefficients:

freedom

Adju - : 02537
70 DF, | p-value: 0.02073

100+

801

60

* %k

+ ®
» + @®
female male

Estimate Std. Error t value Pr(>|t]|)

l gendermale 2.3442 l

0.5786 155.056

0.8182 2.865 0.00452

Signif. codes:

Crxc 0,001 ‘%% 0,01 %7 0.05

Residual standard e
ultiple R-squared:

on 256 degrees of

]
oo a7

statistic: 8.208

0.03107, Adj + ~02728
mIarmd—256 DF| p-value: 0.004517

< 2e-16

gender

EZ female
B2 male

E

.7 0.1

freedom

1




The linear model perspective
Comparing 2 groups

linear.coyote

Assumptions v\ _

gglm(linear.coyote, theme

Residuals

J |Standardized residuals|

-20

051

& linear. coyote

coefficients :

List of 13

Named num [1:2] 89.71 2.34
.— attr{®, "names")= chr [1:2]

"{Intercept)” "coyote$gendermale”

residuals : MWamed num [1:86] 3.29 7.29 2.29 11.89 3.29 ..J

- artri® "namas"= che [1-8/7 "M 2T oTT3oMaM

= theme bw(base size = 16))

Fitted values

Leverage

Residuals vs Fitted Normal Q-Q
[]
3 El ® o T
5 l _g o:—”
: i| 8
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1
g < 0+
i il 8
a ] ‘2 -11 T
: I
e | T2 .
8
W -3
90.0 905 91.0 915 920 -2 -1 0 1 2
Fitted values Theoretical Quantiles
Scale-Location Residual vs. Leverage
[]
. © 27 i
: IR i
: 2
- _0 0_
| | 3
| £ .
H : _g ] H
8 H o -2 °
8 © @
. . . . — »a34 . % .
900 905 91.0 915 920 -0.025 0.000 0.025 0.050



Example: coyote.csv

* Questions: do male and female coyotes differ in size?
* Does sex predict body length?

* Answer: Quite unlikely: p = 0.105

 How much of body length is predicted by sex?
* Answer: About 3% (R?=0.031)



The linear model perspective
One factor with more than 2 levels

protein.expression.csv

* Questions: is there a difference in protein expression between the 5 cell lines?
* Does cell line predict protein expression?
 How much of the protein expression is predicted by the cell line?




Exercise: protein expression

* protein.expression.csv protein<-read csv ("proteln.expression.csv")
* Log-transformed the expression 1ogl10 ()
* Run the ANOVA again using anova test ()
* Uselm() andsummary () forthe linear model approach
 Compare the 2 outputs

 Work out the means log10.expression for the 5 cell lines
 Compare the outputs and understand the coefficients from 1m ()

 Work out R% from the anova () output
 Don’t forget to check out the assumptions




Analysis of variance

protein %>%

anova_ test (logl0.expression~line)

ANOVA Table (type II tests)

Effect DFn DFd F p |p<.05 ges
1 Tine 4 73 8.123|1.78e-05 * 0.308

protein %>%
tukey hsd(loglO.expression~line)

term groupl group2 estimate
1 line A B -0.25024832
2 line A C -0.0/7499724
3 line A D 0.3054939/
4 line A E 0.13327517
5 line B C 0.17525108
6 line B D 0.55574230
/7 line B E 0.38352349
8 line C D 0.38049121
9 line C E 0.20827240
10 line D E -0.17221881

Tukey correction

conf.lpw

-0.578882494
-0.374997820

0.005493391

-0.166725416
-0.124749499

0.255741712
0.083522904
0.112162532

-0.060056276
-0.440547487

conf.h_i_g_h__

0.0/7838585
0.22500335
0.60549456
0.43327575
0.47525167
0.85574288
0.68352407
0.64881989
0.4/7660108
0.09610987

p-adj

2.19e-01
9.56e-01
4.39e-02
7.27e-0]
4.81e-01
1.83e-05
5.48e-03
1.54e-03
2.02e-01
3.84e-01

p.adj.signif

ns
ns
E]

ns
ns

e oe e e
e e

e o

ns
ns



Analysis of variance: The Linear model perspective

linear.protein<-lm(logl0O.expression~line, data=protein)

anova (linear.protein) proteln %>% | |
] anova_test (logl0.expression~line)

Tine 4 2.691 0.6728 8.123 1.78e-05 *¥*
Residuals 73 6.046 0.0828

signif. codes: 0 *¥**’ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ’ 1 Effect DFn DFd F p p<.05| ges
\_ 1 Tline 4 73(8.123 1.78e-05 *10.308 /

summary (linear.protein) s — 1o

call:
Im{formula = logl0. expression ~ Tine, data = protein.stack.clean) C p——

Df Sum Sq Mean Sq[F value Pr(GF)
ANOVA Table (type II tests)

Residuals: o .
Min 10 Median 3q Max
-0.82471 -0.21993 0.02264 0.18263 0.69537

Coefficients:
stimate)\std. Error t wvalue pPri{=|t]|)

{(Intercept) |-0.03144 0.08308 -0.378 0.70817

TineB -0.25025 0.11749 -2.130 0.03855 # : ~ : _ :
TineC -0.07500 0.1072% -0.699 0.48661 lm(loglo ° eXpreSSlon llne’ data_prOteln)
T1ineD 0.30549 0.10725 2.848 0.00571 #=

TineE 0.13328 0.10725 1.243 0.21798

- call:

signif. codes: 0O f#== 0,001 “*+*' 0.01 ‘*" 0.05 “.' 0.1 % ' 1 Tm{formula = logl0.expression ~ line, data = protein.stack.clean)

2701 (Intercept) Tines Tinec TineD Tinee
-0.03144 -0.25025 -0.07500 0.30549 0.13328

Residual standard error: 0.2878 on 73 degrees of freedom [%DefficientS: J

F-statistic: 8.123 on 4 and 73 DF, p-value: 1.784e-05




Analysis of variance: The Linear model perspective

protein %>%
group by (line) %>%
summarise (mean=mean (logl0.expression)) MOdEl

line mean
A [003144412]
| B -0.28169245
C -0.10644136 .
D 0.27404985
E 0.10183104

Im(loglO.expression~line,data=protein)

call:
Im{formula = ToglO.expression ~ line, data = protein.stack.clean)

(;Aterceé;) ’ TineB Tinec TineD lineE
-0.03144 -0.25025 -0. 07500 0. 30549 0.13328
E [ — + *Lo
xpression= B, + B, *Line

/"0 \)/LneA
—0.25025 Line B Example:
Expression = P0.03144]+ —0.07500 Line C Line B = -0.03-0.25 = _0

0.30549 Line D
\ 0.13328 /) Line E




Analysis of variance: The Linear model perspective

gglm(linear.protein,

0.41

0.0

Residuals

{lStandardized residuals|

0.0

1.61

1.2 1

0.8

0.4

theme =

Residuals vs Fitted

theme bw(base size =

® o o® o smee @ o0
- T

03 02 01 00 01 02

Fitted values

Scale-Location
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)
| S

S 27
o
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5] o] [}_
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] E o7

w . 7
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]
1
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Analysis of variance: The Linear model perspective

linear.protein<-lm(loglO.expression~line,data=protein)
summary (linear.protein)

call:
Tm(formula = ToglO.expression ~ line, data = protein)

Residuals:
Min 1o Median 30 Max
-0.62471 -0.21993 0.02264 0.18263 0.69537

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.03144 0.08308 -0.378 0.70617
TineB -0.25025 0.11749 -2.130 0.03655 * 1 1 1
-0-25025 0.11749 -2.130 0.03655 Proportion of variance explained

TineC

1ineD 0.30549 0.10725  2.848 0.00571 ** .
TineE 0.13328 0.10725 1.243 0.21798 by Ce” ||ne5: 31%
Signif. codes: 0 “¥*x’ 0,001 ‘¥**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ' 1

Residual - :
MuTltiple |R-squared: 0.308,
F-statistic: 8.123 on 4 and /3 DF,

878 on 73 degrees
justed R-squared: 0.2701
p-value: 1.784e-05

protein %>%
anova_ test (logl0.expression~line, detailed = TRUE)

SSn Source of variation | Sum of Squares | df | MeanSquare | F p-value
" Between Groups | |, 2691 4 0673 | 812 | <0.0001
E'F'Fect[ SSh ssd} DFn DFd F p p<.05 S e Yoo | 75 | oom
1 Tine |2.691 6.046 4 73 8.123 1.78e-05 *10.308 fotal 8637

2.691 + 6.046 = 8.737: total amount of variance in the/data

Proportion explained by cell line: 2.691/8.737 = 0.308



Analysis of variance: The Linear model perspective

* Questions: is there a difference in protein expression between the 5 cell lines?
* Does cell line predict protein expression?

* Answer: Yes p=1.78e-05

 How much of the protein expression is predicted by the cell line?

e Answer: About 31% (R?=0.308)



Linear model: Additional customisation

Default reference group/level

linear.protein<-1lm(loglO.expression~line, data=protein)
summary (linear.protein)

Call:
Im(formula = loglO.expression ~ line, data = protein)

Residuals:

|ntercept = Min 1Q Median 3Q Max
_ -0.62471 -0.21993 0.02264 0.18263 0.69537
Reference level = Line A

Coefficients:
Estimate Std. Error t value Pr(=|t|)

(Intercept)) -0.03144 0.08308 -0.378 0.70617

1ineB -0.25025 0.11749 -2.130 0.03655 *

1ineC -0.07500 0.10725 -0.699 0.48661

1ineD 0.30549 0.10725 2.848 0.00571 **

1ineE 0.13328 0.10725 1.243 0.21798

Signif. codes: 0 “¥***’ Q. 001 “**' Q.01 **' 0.05 “.” 0.1 * ' 1

Residual standard error: 0.2878 on 73 degrees of freedom
Multiple R-squared: 0.308, Adjusted R-sqguared: 0.2701
F-statistic: 8.123 on 4 and 73 DF, p-value: 1.784e-05



Linear model: Additional customisation

Choosing the reference group/level

protein %>%
mutate(line = factor(line)) %>%
mutate (line = relevel (line, ref = "B")) -> protein

linear.protein<-lm(loglO.expression~line, data=protein)
summary (linear.protein)
Residuals:

Min 1a Median 3Q Max
-0.62471 -0.21993 0.02264 0.18263 0.69537

Intercept =
Reference level = Line B

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) |-0.28169 .08308 -3.391 0.001128
TineA 0.25025 .11749 2.130 0.036546
TinecC 0.17525 .10725 1.634 0.106565
TineD 0.55574 .10725 5.182 1.88e-06
TineE 0.38352 .10725 3.576 0.000624

FE]

kS

o0 000

F
*

Signif. codes: 0 “**%' 0,001 ‘*=*’ 0.01 ‘*' 0.05 “.” 0.1 * " 1

Residual standard error: 0.2878 on 73 degrees of freedom
Multiple R-squared: 0.308, Adjusted R-squared: 0.2701
F-statistic: 8.123 on 4 and 73 DF, p-value: 1.784e-05



Linear model

Simplest
y =Bg + B, X
With 2 factors
Y =Bo + B1™xg + B %, + B3 XX,
With n factors
Y =B+ By Xy + B, X, + B XX, + ..o+ B X,
Let’s not forget the error
Yi= (Bo T B1*Xi) + &,
General formula

y; = (model) + error,
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Non-parametric tests

General principle: original data are transformed into
ranks

Not meeting the assumptions for parametric tests is
not enough to switch to a non-parametric approach

Data exploration is key:

e Qutliers?

* Possible transformation?

e Parametric with corrections?

If outcome is a rank or a score with limited possible
values: often non-parametric approach

Number of values

130

1201
1104
100; 0::°o ° ::..o.
oof edi:ff wF
gdesds o2
801 °® :o
70 *
60 - -
A B

Frequency distribution

—

1 1

Bin Center

T T 1
05152535455565 758595

A
OB
gcC
0D
BE



Non-parametric tests

Original data
e General principle: original data are transformed 120!
into ranks
w00 . B
e Beware of misinterpretation: distribution of the | i F
data
e Distributions = symmetrical and similar 2 60— &
compares means Original data
e Distributions = similar 2 compares medians 9
e Distributions = not similar = compares °
distributions (though not always) o .
4 *
e A correction is applied when there are ties of A
:i:_. :=° : °
0 o?o w ‘ oo
A B D E

1005

80

601

40

201

100;

80

60;

40;

20

Ranks




Comparison between 2 groups
Non-Parametric data



Comparison between 2 independent groups
Mann-Whitney U test

Non-parametric equivalent of the t-test (and not)

In the case of inequality of variance (violation of the homoscedasticity assumption), the ‘unequal’
version of the t-test is a possibility: Welch’s t-test

For a correct interpretation of the test: Data exploration!
Control Treatment 1

Mann-Whitney U test (Mann—Whitney—Wilcoxon, @ @ @ @ @ @ @
Wilcoxon rank-sum test or Wilcoxon—Mann—Whitney) ' ' W
* Wilcoxon: equal sample size \
* Mann and Whitney: different sample size 4 different mice 4 different mice



Comparison between 2 independent groups
Mann-Whitney U test

e How does the Mann-Whitney U test work?

n(n +1)
UI — RI _ 1
2
Real values Ranks
Group1l Group 2 3 1 GIeAp lzGroup 25 U, =R, - ”2(”2 +1)
5 8 5 2 ——» A c - } 2
7 9 6 2) 1 3
3 6 7 4 Where:
= =1
8 5 <l Ri=7 R;=14 *R = sum of ranks
9 6 *n = sample size
« Statistic of the Mann-Whitney test: U (W) Control Treatment 1

U,=7-6=1andU,=14-6 =8

* Smallest of the 2 Us: U, @@@@ @@@@
* U1 comparison to critical value + sample size > p-value W W

* Rtidyverse: wilcox test (y~x) 4 different mice 4 different mice



Comparison between 2 paired groups

Same mouse

Wilcoxon’s sighed-rank test Bk
Mouse 1
e Non-parametric equivalent of the paired t-test (ish) Mouse 2
e Information about the Mann-Whitney test also applies -
e How does the Wilcoxon’s signed-rank test work? 2+3=5/2=2.5: average rank Mouse 3 /iﬁ /iﬁ

9 3 -6 0 1
7 4 -3 1 25
10 4 -6 3 25
8 5 3 — 3 25 ———» 4.5
5 6 1 5 . 4.5
8 2 -6 5 5 4.5 -7
7 7 0 6 6 7 -7
9 4 -5 6 7 7 -7
10 5 -5 6 8 U Sum -35 1

e Statistic of the Wilcoxon’s signed-rank test: Sum of signed ranks = W
* Here:W=-35+1=-34
e Statistic W + sample size — p-value R:iwilcox test(y~x, paired = TRUE)



Comparison between more than 2 groups
One factor
Non-Parametric data



Non-parametric tests
Kruskal-Wallis and Friedman tests

Non-parametric equivalent of the One-Way ANOVA (ish)
* Data replaced by ranks
* Data exploration
* If data represent different distributions: comparison of said distributions
* If original data come from similar distributions: comparison of the medians

Kruskal-Wallis: independent measures
* Statistic=H

Friedman: repeated measures
e Statistic=QorT1 or FM

Post-hoc test associated with Kruskal-Wallis and Friedman: Dunn’s test
* Works pretty much like the Mann-Whitney test



Comparison between more than 2 groups
Independent: Kruskal-Wallis test

Actual values: n=15 Ranks: 15
No Once Twice No Once Twice

63 0 2239 10 7.5 14
261 171 2 1 11
-153 4724 40 ‘ 3 15 9
13 2 1395 5 6 13

965 0 12 7.5

-86 4
32 41 a7

I c
12 T/ 12 322 412 477
- Ll-3m+1 H= —3(15 + 1) = 3.868
H n(n+1)an (n+1) [15(15+1)(5 te ) (15+1)
_ j=1 7

Where: Interpretation of the test: H + degrees of freedom = p-value
°n = total sample size across all groups _ _
«c = number of groups kruskal test(y~x) produces omnibus part of the analysis

*T, = sum of ranks in the j* group

on = size of the j!" group dunn_ test(y~x) produces pairwise comparisons results

# dunn.test package #



Comparison between more than 2 groups
Matched/repeated: Friedman test

Actual values Ranks Matched set of values
Violinists Violin A Violin B Violin C Violinists Violin A Violin B Violin C
1 ( 9 7 6) 1 ( 3 2 1
2 9.5 6.5 8 2 3 1 2
3 5 7 4 3 2 3 1
4 7.5 7.5 6 ‘ 4 2.5 2.5 1
5 9.5 5 7 5 3 1 2
6 7.5 8 6.5 6 2 3 1
7 8 6 6 7 3 1.5 1.5
8 7 6.5 4 8 3 2 1
9 8.5 7 6.5 9 3 2 1
10 6 7 3 10 2 3 1
Sum R, =26.5 R,=21 R.=12.5

* Basicidea: if the sums are very different (here R, R;and R.) the p-value will be small.

12 Where:
orTlorFMorF=l X YR? —[3x N x (k+ 1)]

¢ N X kx(k+1) 2 *N = the number of friedman test (y~x|id)

' 12 subjects (violinists) ,
F= 053G 1)] x [26.5% + 212 +1252] = [3x 10 X 3+ 1] ok = number of groups "+ 1CO*_test (y~x,

| (violins) paired = TRUE,

[ 12 : pr—
F = Fo] x [702.25 + 441 + 156.25] — 120 = 9.95 R = sum of ranks in the p.adjust.method

group (e.g. R,) "bonferroni")

Interpretation of the test: Q or T1 or FM + df= p-value



Association between 2 continuous variables
Linear relationship
Non-Parametric data



Non-parametric tests
Spearman Correlation Coefficient

e Similar concepts as for the other non-parametric tests
ep (rho) is the equivalent of r and calculated in a similar way

eSpearman’s p is Pearson’s r applied on ranks

=r = Similarity COVR(X)R(y)
Pp=1r = Variability SDR(x)SDR(J’)

cor test (method = "spearman")



Exercise 5
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Variable

Quantitative Qualitative

Continuous Discrete Ordinal
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https://github.com/allisonhorst/stats-illustrations#other-stats-artwork



https://github.com/allisonhorst/stats-illustrations#other-stats-artwork

Qualitative data

NOMINAL ORDINAL BINARY

ONLY 2 MUuTUALLY
eXCLUSIVE 0uTCOMES

'ma .l am -
‘ . - — -
TURTLE! ‘r\ “nMQPP‘T -\ }N\gg\
VAN) o

UNORDERED DESCRIPTIONS 0RDeRED DeSCRIPTIONS

Values taken = usually names (also nominal)
* e.g. genotypes

—I'm a

butter, ’lf/

Ca n be n u m be rs b Ut n Ot n u m e ri Ca I https://github.com/allisonhorst/stats-illustrations#other-stats-artwork o
e e.g. group number = numerical label but not unit of measurement

Qualitative variable with intrinsic order in their categories = ordinal
e e.g. low/medium/high

Particular case: qualitative variable with 2 categories: binary or dichotomous
* e.g. alive/dead or presence/absence


https://github.com/allisonhorst/stats-illustrations#other-stats-artwork

Comparison between 2 groups
Comparison between 2 proportions

Binary outcome



Chi-square and Fisher’s tests

Chi? is an approximation
Chi? test very easy to calculate by hand but Fisher’s very hard

Often software will not perform a Fisher’s test on tables > 2x2

Fisher’s test more accurate than Chi? test on small samples

Chi? test generally preferable on large samples

Chi? test assumptions:
e 2x2 table: no expected count <5

 Bigger tables: all expected > 1 and no more than 20% < 5



Chi-square test

* In a chi-square test, the observed frequencies for two or more groups are
compared with expected frequencies by chance

=305

* O = Observed frequencies
* E = Expected frequencies




Fisher’s exact and Chi? tests

Example: cats and dogs.xlsx

e Cats and dogs trained to line dance
e 2 different rewards: food or affection & 8
e Question: Is there a difference between the rewards?
e |s there a significant relationship between the 2 variables?
e Does the reward significantly affect the likelihood of dancing?

e To answer this type of question:

* Contingency table _______|Food __|Affection _

’ Hp
e Fisher’s exact or Chi- tests Dance 2 ?

No dance ? ?
e But first: how many animals do we need?

e Power analysis



Exercise: Power calculation

* Preliminary results from a pilot study: 25% of cats line-danced after
having received affection as a reward vs. 70% after having received food
 How many cats do we need?

power.prop.test ()

{ A




Exercise: Power calculation

* Preliminary results from a pilot study: 25% line-danced after having received affection as a
reward vs. 70% after having received food.
* How many cats do we need?

power.prop.test (pl= 0.25, p2= 0.7, sig.level= 0.05, power= 0.8)

Two-sample comparison of proportions power calculation

[r‘l = lB.lDSESJ
pL = U.Z25
p2 = 0.7
5ig. level = 0.05
power = 0.8
alternative = two.sided

NOTE: n 15 number in *each®* group

* Providing the effect size observed in the experiment is similar to the one observed in the
pilot study, based on a significance threshold of 0.05, to achieve 80% power we will need
19 cats per group (38 total) for a Fisher’s exact test



read tsv("cats.dat")

cats

Food
Food
Food
Food
Food
Food

hown b L R

cats %>%

ggplot (aes (x=Training,

Plot cats data

-> cats

Training Dance

as
as
as
as
as
a5

Reward
Reward
Reward
Reward
Reward
Reward

Yes
Yes
Yes
es
Yes
Yes

fill=Dance)) +

geom bar (position="£ill", colour="black")+

scale fill brewer (palette

yvlab ("Fraction")

= 1)+

Fraction

1.00 A

0.751

0.50 1

0.254

0.00 1

Affection as Reward

Training

Food as Reward

Dance

DNO
.Yes



How are the expected frequencies calculated?

y e
E Observed frequencies

Example: expected frequency of cats line dancing after -mm

having received food as a reward Dance
Direct counts approach: el 1 e
Total 32 36 68
Expected frequency
= (row total)*(column total)/grand total Expected frequencies
- 32+32/68 = 15.1 ~ rood | Affection
Dance 15.1 16.9
Probability approach: The Multiplicative Rule N CEIEE 16.9 191

Probability of line dancing: 32/68
Probability of receiving food: 32/68

Expected frequency:(32/68)*(32/68)=0.22: 22% of 68 = 15.1




Chi? test

X2=2(0;E)2

Observed frequencies Expected frequencies
st i ~ rood | Affection _

Dance Dance 15.1 16.9

No dance 6 30 No dance 16.9 19.1

Chi2 = (26-15.1)2/15.1 + (6-16.9)2/16.9 + (6-16.9)2 /16.9 + (30-19.1)2/19.1 = 28.4

Is 28.4 big enough for the test to be significant?



Is 28.4 big enough for the test to be significant?
The old fashion way

Degree of freedom: df |
df = (row-1)(col-1)=1 | Critical value

—

\ TABLE C: 3* CRITICAL VALUES

. Tail probability p

_m Affection T 5 0I5 W0 , 05 s 02 O 005
6

Dance 26 132 164 207 271 |334] 502 541 663 788

No dance 6 30

277, 322 3.79 4.61 . 7.38 7.82 921 10,60
4.11 4.64 332 6.25 7.81 9.35 984 1134 1284
539 5.99 6.74 7.78 949 1114 1167 1328 1486
6.63 7.29 8.12 924 1107 1283 1339 1509 1675
7.84 8.56 945 1064 1259 1445 1503 1681 1855
! 980 1075 1202 1407 1601 1662 1848  20.28
1022 11.03 12,03 1336 1551 1753 1817 2009 21.95
1139 1224 1329 1468 1692 19.02 1968 2167 2359
1255 1344 1453 1599 1831 2048 2116 2321 2519

x-=28.4 > 3.84 so Yes!

OOV B
-]

-



Prepare cats data for the stats

Training Dance 100

1 Food as Reward Yes Traini N v
2 Food as Reward Yes -ratning cinty <nts
3 Food as Reward Yes > Affection as Reward 114 43
g Ecmg as ;E'ﬂar‘g :EE Food as Reward 10 28 0757
ood as Rewar es
6 Food as Reward Yes l
é Dance
chisg test () g He
fisher test ()
# rstatix package#
Training Dance n 0001
cat S ° > ° ] Affection as Rewa_rd NO ] .‘ 4 Affection as Reward Food as Reward
group by (Training, Dance) >% Affection as Reward Yes 48 Training
— 6L @ J Food as Reward No 10
count ( ) 5> Food as Reward Yes 28
ungroup () %>%
pivot_wider(names_from = Dance, values from = n)-> cats.summary
Training
~chrs l o o L u
Affection as Reward cats.summary s>% n p p5|g nif
Food as Reward select (No,Yes) $>% —

fisher_test() 00 1.31e-06 *#***



Chi-square and Fisher’s Exact tests

cats.summary %>%
select (No, Yes) %>% 100
fisher test()

_ P |p-signif
1.3 1e-0F |k

07519

200

cats.summary %>%

5 Dance
select (No, Yes) %>% goso %T
[' es

chisg test()

. n 5tat|5t|c df mEthOd p'SIQHif 0251
1 200 23.52028 1 Chi-square test ke
0.001
Cats . Summary %>% Affection ::13 Reward Food aiseward

Training

select (No, Yes) %>%
chisg test (correct = FALSE)

n statistic

1 200 25.35569

~df method p.signif

1 Chi-square test ke

Answer: Training significantly affects the likelihood of cats line dancing (p=4.8e-07).



Chi-square and Fisher’s Exact tests

Stats on the graph Fisher's Exact Test: p = 0.00000131

—
=
1

o
w

o
s ]
1

=
~

[s=]
n

Dance

|:| Yes

Fraction
o o
= [ ]
=
o

o
(38

o
(]

o
i

=
]
1

ggplot (cats, aes(x=Training, fill=Dance))+ Affection és Reward Food aiseward
geom bar (position="fill", colour="black")+ Training
scale fill brewer (palette = 1)+
yvlab ("Fraction") +
scale y continuous (breaks=seq(from =0, by=0.1, to=1.05), limits = c¢(0,1.05))+
annotate ("text", label="Fisher's Exact Test: p = 0.00000131", x=1.5, y=1.05, size=0)



Fisher’s exact and Chi? tests
Beyond significance

* Important things to remember:

* (Qualitative data can be presented as percentages but the tests should always be run on actual counts
 Power!

* A p-value should always be interpreted in the context of the experiment

o I
Power! Fisher's Exact Test: p = 0.00000131
1.01

0.97

b
[w=]
1

e
-~

Ty

\

Dance

D No
D Yes

o <
a2

Fraction
[$)]

M M A

<
~

o
w

<o
3]

e
o

e
[a=]
1

Affection as Reward Food as Reward
Training
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Choosing a test: Flow charts

T i e 2 way ANOVA, General Linear
Mixed) Model, etc.
: How many
Differences?
factors?
One »  Same or different subjects? I
v l
Start |+ Same Different
& &
© O

o) =) ) >

s ||2] [5]]3

; ; Pearson ® 3 ® E

Correlation? Parametric L = =
Correlation a = a 2
2. =
Nonparametric Spearman.Rank

Correlation 3 - s = z
B 2 a 2 3
2 @ 3 @ 3
o O 8 4 - E
== S > 2=
20 S . S
——I I sall 2 2 2
S 8 > =

~| Categories? I—- Parametric Chi Square test




Statistics Decision tree
Anne Segonds-Pichon

Babraham
Bioinformatics

2 way ANOVA,
Two or more General Linear
(Mixed) Model, etc.

Non-Parametric Ol [EETEE

test
Differences? How many factors?
Same
s Y

repeated ANOVA

Same or different
subjects?

Mann Whitney U

Non-Parametric
test

Parametric Pearson Correlation Different

Correlation? Parametric T-test / ANOVA

Spearman Rank

Non-Parametric .
Correlation

Chi Squared

Categories? Parametric . ,
& Fisher’s exact



Babrahbmm Statistics Decision tree

Bioinformatics Anne Segonds-Pichon

Is there a difference between males and females coyotes in the body length?

Difference between the 2 conditions 2 way ANOVA,
Two or more General Linear
\ (Mixed) Model, etc.
Non-Parametric W|Ico>;c;r;tpa|red
Differences? How many factors? One factor: Sex (2 levels)
Same
I Parametric Paired t-test /
repeated ANOVA
Same or different
subjects?
e
test
/ Pearson Correlation Different

Non-Parametric o Spearman.Rank /
Correlation .
2 different samples:
Males and Females » i
Categories? | Parametric Chi Squared test orma L .
Homogeneity of variance:

Body length (cm)

That’s the one!



Start

Two-way ANOVA,

— Two or more —| €=zl Blpleels

(Mixed) Model, etc.
Paired T
Parametric test/repeated
~ Differences? — Howmany ANOVA
factors?
’ - Same
Non-parametric Wilcoxon paired test
Same or
— One — different -
subjects?
Parametric T-test/ANOVA
Parametric  —| b — Different
Correlation ]
— Correlation? Non-parametric Mann-Whitney U
Spearman test
Non-parametric — Rank
Correlation
%2 table Fisher’s Exact
test
— Categories?
>2x2 table — Sl SRR

test



Which statistical test should | use?




‘What statistical test should I do?

How many l

variables?

1 quantitative
& I qualitative

Wilcoxon
signed-rank test

Student’s t-test

Welch's t-test for 2
i for paired samples

independent samples test

Repeated
‘measures ANOVA

W @statsandc https://statsandr.com/blog/what-statistical-test-should-i-do/



https://statsandr.com/blog/what-statistical-test-should-i-do/

Statistics resources:

R commander

DISCOVERING STATISTICS
USING R

ANDY FIELD | JEREMY MILES | ZOE FIELD

EN 6

HOME LEARN TOPICS PRICING SHOP

COMPARING MULTIPLE MEANS IN R

E / IN LTIPLE MEANSINR / ANOVAINR

# 3 trt2 weight 10 5.53 6.4a3
Visualization

Create a box plot of weight by group:

ggboxplot(PlantGrowth, x = "group”, y - "weight")

80 H
55
%5,0
H
45
40
35
crl trit tri2
group

Check assumptions

https://www.datanovia.com/en/lessons/

https://rpkgs.datanovia.com/rstatix/

rstatix

Provides a simple and intuitive pipe-friendly framework, coherent with the ‘tidyverse’ design philosophy. for performing basic statistical
tests, including t-test. Wilcoxon test, ANOVA, Kruskal-Wallis and correlation analyses.

The output of each test is automatically transformed into a tidy data frame to facilitate visualization.

Additional functions are available for reshaping, reordering, manipulating and visualizing correlation matrix. Functions are also included
to facilitate the analysis of factorial experiments, including purely ‘within-Ss’ designs (repeated measures), purely ‘between-Ss’ designs,
and mixed ‘within-and-between-Ss’ designs.

It's also possible to compute several effect size metrics, including “eta squared” for ANOVA, “Cohen’s d” for t-test and “Cramer's V* for
the association between categorical variables. The package contains helper functions for identifying univariate and multivariate outliers,
assessing normality and homogeneity of variances.

Key functions

Descriptive statistics

get_summary_stats() - Compute summary statistics for one or multiple numeric variables. Can handle grouped data.
freq_table() - COMpute frequency table of categorical variables.

get_mode() : Compute the mode of a vector, that is the most frequent values

identify_outliers() - Detect univariate outliers using boxplot metheds.

mzhalanobis distance() : Compute Mahalanobis Distance and Flag Multivariate Outliers.

shapiro test() and mshapiro_test() : Univariate and multivariate Shapire-Wilk normality test

Comparing means

t_test() : perform one-sample, two-sample and pairwise t-tests

wilcox_test() : perform one-sample, two-sample and pairwise Wilcoxon tests

sign_test() : perform sign test to determine whether there is a median difference between paired or matched observations.
anova_test() © an easy-to-use wrapper around car::anova() to perform different types of ANOVA tests, including independent
measures ANOVA, repeated measures ANOVA and mixed ANOVA.
+ get snova test table() - extract ANOVA table from anova_test() results. Can apply sphericity correction automatically in the
case of within-subject (repeated measures) designs. - welch_anova_test() : Welch one-Way ANOVA test. A pipe-friendly wrapper
around the base function stats::oneway.test() . This is is an alternative to the standard one-way ANOVA in the situation where
the homogeneity of variance assumption is violated.

kruskal test() : perform kruskal-wallis rank sum test

friedman_test() : Provides a pipe-friendly framework to perform a Friedman rank sum test, which is the non-parametric
alternative fo the one-way repeated measures ANOVA fest.
+ get_comparisons() © Create a list of possible pairwise comparisons between groups
* get pvalue position : autocompute p-value positions for plotting significance using ggploi2.



https://rcompanion.org/rcompanion/a_02.html
https://www.datanovia.com/en/lessons/anova-in-r/
https://rpkgs.datanovia.com/rstatix/

Statistics resources

Babraham |
Bioinformatics

Hayley Carr (i.e. mel):
hayley.carr@babraham.ac.uk

https://www.nature.com/collections/qghhgm
Not always the friendliest, but covers lots of relevant topics

Collection 09 May 2017

Statistics for Biologists

There is no disputing the importance of statistical analysis in biological research, but too often it is considered only after an experiment is completed, when it

may be too late.

This collection highlights important statistical issues that biologists should be aware of and provides practical advice to help them improve the rigor of their

work.

Nature Methods' Points of Significance column on statistics explains many key statistical and experimental design concepts. Other resources include an

online plotting tool and links to statistics guides from other publishers.

2% EDITION

STEVE McKILLUP

STATISTICS
EXPLAINED Qésfé?;

. ' S al® = 17’&_:5 )
» A 2 P> L i g
i ’ ¥ oad <X

- AN o

ﬁ T

3 3 [ S Y - ‘@."?‘@‘( ¢
& * 2.! \“& @ t‘*é ~{:, -1-‘@\ ‘Qa\‘dz
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AN INTRODUCTORY GUIDE New MI:...A -.B»waha gcgt‘a.l CS.!.(
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https://www.nature.com/collections/qghhqm
mailto:hayley.carr@babraham.ac.uk
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