
Software:	the	good,	the	bad	and	the	ugly

Festival	of	Genomics	2017

Russell	Hamilton
rsh46@cam.ac.uk

Software:	What’s	good,	bad	and	ugly

Bioinformatics	Software

Software	X

All software	contains	bugs:	

• Industry	Average:	“about	15	- 50	errors	per	1000	lines	of	delivered	code”
Steve	McConnell	(author	of	Code	Complete	and	Software	Estimation:	Demystifying	the	Black	Art)	

• Range	from	spelling	mistake	in	error	message	to	completely	incorrect	results

• Most	software	will	process	the	input	to	produce	an	output	without	errors	or	warnings

Never blindly	trust	software	or	pipelines

• Always test and	validate results

• Avoid	black box software	(definition:	produces	results,	but	no	one	knows	how)

W Y

X

Z

Software:	What’s	good,	bad	and	ugly

Different	classes	of	bioinformatics	software

Software	X

W Y

X

Z

Class Examples Description

Processing TopHat2,	Bowtie2 Performing	computationally intensive	task,	
applying	mathematical	models

Evaluation FastQC,	BamQC Deriving	QC	metrics	from	output	files

Converters SamToFastq (Picard	Tools) Simply converting	between	file	formats.	
Generally	stable	no	regular	updates

Pipelines Galaxy,	ClusterFlow The	glue	for	joining	software	to	create	an
automated	pipeline

1. Finding	Software	to	do	the	job
2. Has	the	software	been	published?
3. Software	Availability
4. Documentation	Availability
5. Presence	on	user	groups
6. Installation	and	Running
7. Errors	and	Log	Files
8. Use	standard	file	formats
9. Evaluating	Commercial	Software
10. Bugs	in	scripts	/	pipelines	to	run	software
11. Writing	your	own	software
12. Using	and	creating	pipelines

12	Step	Guide	for	evaluating	and	selecting	bioinformatics	software	tools

Software:	What’s	good,	bad	and	ugly

Identify	the	required	task

1.	Finding	software	to	do	the	job

Alignment	of	methylation sequencing	data	
to	reference	genome

Are	there	related	studies	performing	similar	analysis?	
Publication	/	posters	/	talks

Required	features Must	Have
1.	INPUT	standard	FASTQ	format	files
2.	OUTPUT	standard	BAM	alignments
3.	OUTPUT	Compatible	with	methylKit

Like	to	have
1.	Perform	methylation	calls
2.	Must	make	use	of	multi	processors	for	large
numbers	of	samples

Software:	What’s	good,	bad	and	ugly

✓ Published	in	a	peer	reviewed	journal
As	stand	alone	software	or	part	of	study

Cited	by	other	peer	reviewed	papers✓

Has	the	software	been	benchmarked
(by	other	people	than	the	authors)

Short	read	mapping	is	“generally	solved	problem”
Informative	for	run	times	

✓ BMC	Bioinformatics;	2016;	17(Suppl 4):69
DOI:	10.1186/s12859-016-0910-3

2.	Has	the	software	been	published?

Software:	What’s	good,	bad	and	ugly

Software	available	for	download
Hosted	on	a	recognised	software	repository	
e.g. GitHub,	BitBucket,	SourceForge

Software	regularly	updated	/	bugs	fixed	/	releases	
More	than	one	developer	(e.g.	group	account)

Permanent	archive	of	software	releases
e.g.	zenodo.org,	figshare.com

✓

University	/	Institute	/	Company	Web	site
Software	is	the	responsibility	of	a	group	not	just	an	individual	

✓

3.	Software	Availability

Software:	What’s	good,	bad	and	ugly

✓

Bugs	are	reported	and	fixed

New	feature	requests	are	added

✓

3.	Software	Availability

Software:	What’s	good,	bad	and	ugly

User	Documentation✓

Release	Documentation
Versions	– aids	reproduceability

✓

4.	Documentation	Availability

Software:	What’s	good,	bad	and	ugly

WT KO1 KO2 KO3

WT

KO1

KO2

KO3

X

X

X

XX

X

4.	Documentation	Availability

Software:	What’s	good,	bad	and	ugly

Example:	RNA-Seq	Differential	Gene	analysis	using	DESeq2	Discover	limitations
DESeq2 Manual
”The results
function without any
arguments will
automatically
perform a contrast of
the last level of the
last variable in the
design formula over
the first level.”

count.data <- DESeqDataSetFromMatrix(sampleTable=smplTbl,
design= ~ genotype)

count.data <- DESeq(count.data)

binomial.result <- results(count.data)

binomial.result <- results(count.data, contrast=c(”genotype",”K01",”K02"))

Name fileName genotype
WT1 wt1.htseq_counts.txt WT
WT2 wt2.htseq_counts.txt WT
WT3 wt3.htseq_counts.txt WT
KO1.1 ko1.1.htseq_counts.txt KO1
KO1.2 ko1.2.htseq_counts.txt KO1
KO1.3 ko1.3.htseq_counts.txt KO1
KO2.1 ko2.1.htseq_counts.txt KO2
KO2.2 ko2.2.htseq_counts.txt KO2
KO2.3 ko2.3.htseq_counts.txt KO2
KO3.1 ko3.1.htseq_counts.txt KO3
KO3.2 ko3.2.htseq_counts.txt KO3
KO3.3 ko3.3.htseq_counts.txt KO3

✓

✗

Evidence	for	support	questions	being	answered
e.g.	FAQ,	searchable	public	support	group

✓

5.	Presence	on	user	groups

https://www.biostars.org

http://seqanswers.com

Software:	What’s	good,	bad	and	ugly

Is	there	someone	near	by	you	can	ask	for	help Bioinformatics	Core	Facility

Research	group	down	the	corridor

GitHub	Issues
Google	Groups

Will	run	on	standard	architecture✓

✓ Easy	to	install

6.	Installation	and	Running

Release	versions✓
$	bismark --version										

Bismark - Bisulfite	Mapper	and	Methylation	Caller.																							
Bismark Version:	v0.16.3_dev								

Copyright	2010-15	Felix	Krueger,	Babraham Bioinformatics														
www.bioinformatics.babraham.ac.uk/projects/

Source	code	available
Binaries	can	simplify	installation

✓

Docker/Galaxy/BaseSpace

Software:	What’s	good,	bad	and	ugly

✓ Default	parameters
A	sensible	set	of	default	parameters	that	are	likely	to	
produce	a	good	first	pass	at	the	results

Example:	Traceability	of	results	though	the	steps	in	the	analysis

Intermediate	results	are	excellent	check	points

Software:	What’s	good,	bad	and	ugly

6.	Installation	and	Running

Alignment BAM countsHTSeq-count DESeq2

Normalised	
read	counts

Differentially	
Expressed	
Genes

✓ ✓ ✓

RNA-Seq	Differential	Gene	Expression	Analysis

Sample:Sample
Correlation

MA-PlotsSample	PCA

Per	Gene	
std.dev

✓
✓

✓ ✓

✓

7.	Errors	and	Log	Files

Warnings Don’t	ignore	warnings,	they	may	be	telling	
you	something	crucial	about	your	data

Errors Problem	severe	enough	for	the	program	
to	stop	and	produce	an	error

Software:	What’s	good,	bad	and	ugly

Keep	and	read	log	files	for	software	run

8.	Use	standard	file	formats

Standard	Input	Files✓
FASTA,	FASTQ

Converting	between	formats	could	introduce	errors

Standard	Output	Files✓
BAM

Compatible	with	downstream	tools

Software:	What’s	good,	bad	and	ugly

Bioinformaticians	spend	an	embarrassing	amount	of	time	converting	between	file	formats

9.	Evaluating	Commercial	Software

Software:	What’s	good,	bad	and	ugly

Should	you	use	commercial	software	to	do	RNA-Seq	DGE	analysis?

Lots	of	good	commercial	software	available	e.g.	Partek

Pros Cons

Graphical	Interface	– no	command	line Run	analysis	without	understanding	the	steps

Single	application	for	all	steps Harder	to	trace	back	step	by	step

Dedicated	Customer	Support Limited user	group	activity

Less	transparency	(methods	/	bugs	fixed)

Expensive

License	required	to	reproduce	analysis	(e.g.	reviewers)

10.	Bugs	in	scripts	/	pipelines	to	run	software

Software:	What’s	good,	bad	and	ugly

1.	Bash	Script	for	running	fastQC

for file in *_1.fq.gz;
do
fastqc $file

done

multiqc .

Often	written	specifically	for	each	analysis	or	project	and	are	prone	to	bugs	

Examples	of	accidentally	missing	out	samples

2.	RNA-Seq	DESeq2	Sample	Table
genotype <- data.frame(

‘WT’, ’wt’, ’Wt’, ‘KO1’,’kO1’,’KO1’,
‘KO2’,’Ko2’,’KO2’,‘KO3’,’KO3’,’KO3’)

...
results(dds, contrast=c(”genotype",”WT",”K02"))

Software:	What’s	good,	bad	and	ugly

The	bad	and	ugly

• Home	made	“glue”	scripts	for	running	software	can	be	bug	prone
• “dark	script	matter”	isn’t	reviewed	or	assesses	and	rarely	released	in	methods	sections
• In	a	3000	sample	study,	errors	are	propagated	3000	times!

The	good

• Purpose	build	pipeline	tools
• Premade	pipelines	for	e.g.	RNA-Seq	differential	gene	expression
• Job	queuing	- Load	balancing	across	hardware	(laptop	to	cluster	farm)
• Log	files	track	a	samples	progress	through	pipeline

11.	Utilising	dedicated	Pipeline	tools

Software:	What’s	good,	bad	and	ugly

http://clusterflow.io/

https://usegalaxy.org/

https://github.com/common-workflow-language

Common
Workflow
Language

11.	Utilising	dedicated	Pipeline	tools

Interaction	via	a	web	browser
Public	and	private	server	installs
Many	pre-built	pipelines
Large	user	community

Command	line	interface
Many	pre-built	pipelines

A	language	for	building	your	own	pipelines
Utilised	by	other	pipeline	tools	e.g.	NextIO

Rule	1:	Identify	the	Missing	Pieces
Rule	2:	Collect	Feedback	from	Prospective	Users
Rule	3:	Be	Ready	for	Data	Growth
Rule	4:	Use	Standard	Data	Formats	for	Input	and	Output
Rule	5:	Expose	Only	Mandatory	Parameters
Rule	6:	Expect	Users	to	Make	Mistakes
Rule	7:	Provide	Logging	Information
Rule	8:	Get	Users	Started	Quickly
Rule	9:	Offer	Tutorial	Material
Rule	10:	Consider	the	Future	of	Your	Tool

Software:	What’s	good,	bad	and	ugly

12.	Developing	your	own	software

If	you	are	sure	a	great	piece	of	software	doesn’t	already	exist	or	can	be	modified	for	the	task

Developing	your	own	tools	gives	an	appreciation	of	how	difficult	it	can	be

Weighting	the	evaluation	criteria

Software:	What’s	good,	bad	and	ugly

Criteria Importance Comments
1 Finding	Software	to	do	the	job +++++ Use the	right	tools	for	the	job

2 Has	the	software	been	published? +++ New	software	being	released	so	check	for	improved	methods.	Just	because	
its	published	and	well	used	doesn’t	mean	it’s	still the	best

3 Software	Availability ++

Openness	it	a	good	sign	for	finding	error	/	bugs	/	suggesting	feature	
enhancements

4 Documentation	Availability +++++
5 Presence	on	user	groups +++++
6 Installation	and	Running +++
7 Errors	and	Log	Files +++++
8 Use	standard	file	formats ++++ Conversions could	add	sources	of	error
9 Evaluating	Commercial	Software + Price	Vs	Open	source	software

10 Bugs	in	scripts	/	pipelines	to	run	
software +++++ Pipelines	standardise workflows

11 Utilising dedicated	pipeline	tools +
12 Writing	your	own	software + Don’t	re-inventing	the	wheel

Software:	What’s	good,	bad	and	ugly

Method	1
Method	2
Method	3

Compromises	for	run	time	vs	accuracy/sensitivity

Project	A	has	3000	samples	vs	Project	B	with	12	samples

Method	1:	4	hours	per	sample		98%	accuracy
Method	2:	30	mins	per	sample		97%	accuracy

What	would	you	choose	if
Method	1:	4	hours	per	sample		98%	accuracy
Method	3:	15	mins	per	sample	 90%	accuracy

Weighting	the	evaluation	criteria

Software:	What’s	good,	bad	and	ugly

Summary

Many	ways	to	evaluate	software

• Openness	and	engagement	with	users	is	very	important
- bugs	fixed,	features	added,	large	user	base

• Evaluate	features,	e.g.	run	time,	against	your	project	requirements

• If	you	are	using	pipelines,	use	purpose	build	pipelining	tools

